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a b s t r a c t

Frequent or contextually predictable words are often phonetically reduced, i.e. shortened
and produced with articulatory undershoot. Explanations for phonetic reduction of pre-
dictable forms tend to take one of two approaches: Intelligibility-based accounts hold that
talkers maximize intelligibility of words that might otherwise be difficult to recognize;
production-based accounts hold that variation reflects the speed of lexical access and
retrieval in the language production system. Here we examine phonetic variation as a func-
tion of phonological neighborhood density, capitalizing on the fact that words from dense
phonological neighborhoods tend to be relatively difficult to recognize, yet easy to produce.
We show that words with many phonological neighbors tend to be phonetically reduced
(shortened in duration and produced with more centralized vowels) in connected speech,
when other predictors of phonetic variation are brought under statistical control. We argue
that our findings are consistent with the predictions of production-based accounts of pro-
nunciation variation.

� 2011 Elsevier Inc. All rights reserved.
Introduction

Many studies have noted a relationship between pro-
nunciation and predictability of utterances. For example,
Lieberman (1963) observed that tokens of the word ‘‘nine’’
were shorter and less intelligible when excised from the
context ‘‘A stitch in time saves ___’’ than from ‘‘The next
word will be ___’’. Similar observations have been made
for words that are frequent, repeated within a discourse,
or contextually predictable based on semantic, syntactic,
or phonological criteria, creating wide-spread consensus
that highly predictable items tend to be phonetically
reduced. Phonetic reduction is usually understood to mean
not only durational shortening, but also articulatory
undershoot resulting in consonant lenition, increased coar-
ticulation, and vowel centralization (Aylett & Turk, 2006;
. All rights reserved.

inguistics, University
ley, CA 94720-2650,
Bell, Brenier, Gregory, Girand, & Jurafsky, 2009; Bybee,
2001; Fowler & Housum, 1987; Gahl, 2008, 2009; Gahl &
Garnsey, 2004; Hunnicutt, 1985; Jurafsky, 2003; Quené,
2008; Tily et al., 2009).

Despite this broad consensus, it remains unclear why
highly-predictable items reduce – or why, conversely,
items of low predictability tend to be lengthened and
hyperarticulated. Broadly speaking, explanations of pho-
netic variation – and variation at other levels of linguistic
structure – tend to take one of two approaches, which
may be termed ‘‘intelligibility-based’’ and ‘‘production-
based’’, respectively. Intelligibility-based accounts (some-
times termed ‘‘listener-oriented’’ or stated with reference
to audience design (Clark, Brennan, Resnick, Levine, &
Teasley, 1991; Galati & Brennan, 2010) note that speakers
may adjust their speech so as to ensure intelligibility of
words that might otherwise be difficult to understand (Ay-
lett & Turk, 2004; Flemming, 2010; Fox Tree & Clark, 1997;
Lindblom, 1990; van Son & Pols, 2003, for pronunciation
variation; and Galati & Brennan, 2010; Levy & Jaeger,
2007; Lockridge & Brennan, 2002; Jaeger, 2010, for
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variation at other levels of linguistic structure).1 Produc-
tion-based (or ‘‘speaker-internal’’) accounts, by contrast,
attribute variation to production-internal mechanisms, such
as variation in the speed of lexical access, retrieval, and
encoding in language production. Reduced forms, on this
view, occur because articulation reflects the time course of
lexical access and retrieval (see for example Bell et al.,
2009; Ferreira, 2008; Gahl, 2008 for pronunciation variation;
Ferreira, 2008; Ferreira & Dell, 2000 for variation in syntactic
realization and word choice). Both of these two approaches,
then, attribute variation to speed and ease of retrieval. They
differ in that the relevant retrieval processes underlie either
word recognition (in intelligibility-based accounts) or
production (in production-based accounts).

Comparing the merits of production-based and intelligi-
bility-based approaches is complicated by the fact that
these approaches often yield identical predictions: High
frequency and high predictability generally makes words
good candidates for shortening on the basis of ease of re-
trieval for production, and it also enables listeners to cope
well with poor intelligibility. At the core of this ambiguity
is the fact that, ‘‘[f]or the most part, the same things that
make a word easy to understand make that word easy to
say.’’ (Dell & Gordon, 2003, p. 9).

To understand the relationship between pronunciation
and predictability of utterances, then, one must ask which
retrieval speed matters for the articulation of more vs. less
predictable items: production retrieval speed or recogni-
tion retrieval speed? The goal of the present paper is to ad-
dress this question.

With that goal in mind, we focus here on a property of
words that affects production and recognition processes
differently. As Dell and Gordon (2003) point out, a lexical
variable that has this property is phonological neighbor-
hood density. Phonological neighborhood density is a mea-
sure of the number of words in the lexicon that are
phonologically similar to a given target word. By the most
common metric (Luce, Pisoni, & Goldinger, 1990; Nus-
baum, Pisoni, & Davis, 1984; Pisoni, Nusbaum, Luce, &
Slowiaczek, 1985), two words are considered neighbors if
they differ by deletion, insertion, or substitution of one
segment (but see Goldrick, Folk, & Rapp, 2010 for an eval-
uation of different neighborhood metrics as predictors of
speech errors). Importantly for the current discussion,
words with many neighbors are recognized more slowly
and less accurately than words with few neighbors (Luce
& Pisoni, 1998; McClelland & Elman, 1986; Vitevitch &
Luce, 1998). The relationship between neighborhood
density and confusability conforms to many people’s
1 Several of these proposals (Aylett & Turk, 2004; Jaeger, 2010; Levy &
Jaeger, 2007; van Son & Pols, 2003) relate the reduction of highly-
predictable forms to the pacing of information density throughout utter-
ances. Since estimates of information density are based on the probability
of recognition, i.e. from the listener’s perspective, these approaches have
typically aligned themselves with intelligibility-based approaches to var-
iation. Depending on how information density is modeled, information-
theoretic approaches can in principle arrive at the same predictions as
production-based approaches, a possibility that is explicitly mentioned in
Jaeger (2010, p. 51): ‘‘[w]hether speakers consider their interlocutors’
perspective when estimating information density is an empirical question
that remains for future research.’’
intuitions: It is easy to imagine a listener mishearing, for
example, cat as hat or cap or some other similar-sounding
word. In recognition, then, high phonological neighbor-
hood density creates competition between the target and
its neighbors. Interestingly, the effects of phonological
neighborhood density on production are quite different:
Having many neighbors facilitates word production, as evi-
denced in speech error rates (Stemberger, 2004; Vitevitch,
1997, 2002; Vitevitch & Sommers, 2003) and naming
latencies (Vitevitch, 2002; Vitevitch & Sommers, 2003) in
neuro-typical speakers, and in speakers with acquired
language disorders (Goldrick et al., 2010; Gordon, 2002).
Phonological neighborhood density thus appears to have
inhibitory effects on recognition, but facilitative effects
on production.

The inhibitory effect of high phonological neighborhood
density has been modeled in several models of word recog-
nition, such as the TRACE model (McClelland & Elman,
1986), the Shortlist model (Norris, 1994), and the Neigh-
borhood Activation Model (NAM) (Luce & Pisoni, 1998).
The basic mechanism for modeling the competition
between a target and its neighbors in all of these models
is that presentation of a target word activates the tar-
get along with its neighbors. The activation of other words
besides the target word causes a delay or possibly failure in
recognizing the target.2

The facilitative effect of high phonological neighbor-
hood density on language production has been modeled
more recently (Dell & Gordon, 2003) in the two-step inter-
active model of lexical access (Dell, 1986; Dell, Schwartz,
Martin, Saffran, & Gagnon, 1997). The two-step interactive
model of lexical access is a spreading-activation model
containing a conceptual semantic level, a ‘‘lemma’’ level,
which represents words as semantic/syntactic units, and
a level of phonological segments. Importantly, the model
assumes that activation may flow in both directions: from
lemmas to phonological segments, and from phonological
segments to lemmas. As a consequence, once activation
has spread from a target lemma to the desired phonologi-
cal segments, it spreads from those segments to the lemma
representations of the target’s phonological neighbors,
each of which is linked to all but one of the target’s phono-
logical segments. The target’s neighbors, once activated,
send activation to their phonological segments – and the
segments, in turn, send activation back to all lemmas
linked to them, including the target lemma.

Dell and Gordon’s account anchors the seemingly para-
doxical effects of phonological neighborhood density in
one of the most fundamental properties of talking and
listening: For the most part, speakers start out with an
2 It should be noted that the notion of activation in the current
discussion represents a construct in models of lexical access and retrieval,
and in the memory literature more broadly (Anderson, 1983). ‘‘Activation’’,
in that literature, refers to a gradient property of nodes in a network that is
used to predict interactions among nodes in the network and maps onto
processing times for retrieving items from long-term memory. The
modeling constructs of ‘‘activation’’, and of ‘‘accessibility’’, differ from the
notions ‘‘activation’’ and ‘‘accessibility’’ in discussions of salience in
discourse, for example, where the words ‘‘activate’’ and ‘‘activation’’ are
sometimes used in the sense of ‘‘make/be salient’’ or ‘‘bring to someone’s
attention’’.
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intention to convey some meaning, and they select suitable
forms. Listeners, by contrast, start out being confronted
with some form whose meaning they must work out. In
production, a target word’s main competitors and the main
source of speech output errors are semantically related
words, not phonologically related words (Dell et al.,
1997). High neighborhood density facilitates production
because feedback from the neighbors’ segments to the
target lemma increases activation of the target lemma,
without increasing the activation of the target’s semantic
competitors (unless the semantic competitors also happen
to be phonologically similar to the target). Word recogni-
tion, by contrast, is driven by form. A recognition target’s
main competitors are phonologically related words: Lis-
teners are far more likely to mistake cat for hat than for
dog. Therefore, ‘‘production and comprehension differ in
their response to neighborhood density in the model be-
cause production and comprehension tasks create different
competitive environments. When the task dictates that
phonological neighbors are serious competitors, a densely
populated phonological neighborhood is detrimental to
fast and accurate retrieval. When the task dictates that
other words are the main competitors, neighborhood
density promotes accurate retrieval of the target’’ (Dell &
Gordon, 2003, p. 28).

The fact that high neighborhood density facilitates pro-
duction, yet inhibits recognition, means that this variable
allows us to tease apart the role of production-based vs.
intelligibility-based factors in pronunciation variation.
Intelligibility-based accounts would lead one to expect
that words with many neighbors should be lengthened
and strengthened, to compensate for their low intelligibil-
ity. Production-based accounts, on the other hand, would
lead one to expect that words that are retrieved quickly
tend to be phonetically reduced – provided that fast
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Fig. 1. Vowel space of a talker (s26) in the Buckeye corpus. Each observation rep
the words the vowel token occurred in. The plus sign marks the center of the ta
retrieval speed translates into fast production speed.
Whether that is the case may depend on a number of other
factors, which we discuss below.

Previous studies of neighborhood density effects on
pronunciation variation

A number of studies have examined effects of neighbor-
hood density on pronunciation. Most of these studies have
focused on vowel dispersion as a measure of phonetic real-
ization. Vowel dispersion (and its opposite, vowel central-
ization) refers to the distribution of vowel tokens in vowel
formant space. It is commonly quantified by measuring vo-
wel formants (F1 and F2) in word tokens produced by a
talker and calculating the Euclidean distance of individual
tokens from the center of the space. The more central vow-
els are in F1/F2 space, the more schwa-like and ‘‘reduced’’
they are. Fig. 1 illustrates the F1/F2 space for a talker in the
Buckeye corpus of conversational speech (Pitt et al., 2007).

Increased vowel dispersion is known to be associated
with greater intelligibility (Bradlow, Torretta, & Pisoni,
1996). Furthermore, increased vowel dispersion is a fea-
ture of ‘‘clear speech’’, i.e. a speaking style speakers adopt,
for example, when asked to imagine themselves talking to,
a person with a hearing loss (Moon & Lindblom, 1994;
Picheny & Durlach, 1985). This makes vowel dispersion a
natural variable to focus on for determining whether
speakers modify vowel dispersion in such a way as to
counteract neighborhood density effects on intelligibility.

The first study to investigate whether neighborhood
density affected vowel dispersion (Wright, 1997, 2004)
examined two groups of monosyllabic (CVC) words read
in isolation, selected from a database of recordings from
10 speakers (Torretta, 1995). The two groups of words dif-
fered in neighborhood density and word frequency. The first
1500 1000
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group of words, termed the ‘‘easy’’ words, were from sparse
neighborhoods and had relatively high frequencies com-
pared to their neighbors. The second group (the ‘‘hard’’
words) were words from dense neighborhoods and had rel-
atively low frequencies, relative to their neighbors. It was
found that vowels were significantly more centralized in
the high-frequency, low-density words than in the low-fre-
quency, high-density words. This overall effect was carried
by the ‘‘point’’ vowels /i,u,a/, i.e. those vowels maximally
distant from the articulatory and acoustic center of vowel
space. Since word frequency and neighborhood density
covaried in the stimulus set, the results do not indicate
which of these variables was responsible for the observed
effect.

A subsequent study (Munson & Solomon, 2004) probed
the effects of word frequency and neighborhood density by
factorially manipulating these two variables in a single-
word naming task: It was found that low frequency and
high density were each associated with increased vowel
dispersion relative to high frequency and low density.
There was also a significant interaction between the two
variables, such that words that were of low frequency
and high density exhibited the greatest degree of disper-
sion. It should be noted that the two sets of high-frequency
words did not differ in the number of neighbors, but rather
in frequency-weighted neighborhood density, a measure
combining neighbor count and neighbor frequency. If pro-
nunciation reflects neighborhood size, i.e. the number of
neighbors, rather than frequency-weighted density, then
the observed interaction could have arisen due to the fact
that neighborhood size was not manipulated in the high-
frequency group.

Increased vowel duration is usually associated with in-
creased vowel dispersion (Moon & Lindblom, 1994), raising
the possibility that variation in vowel dispersion could
reflect variation in vowel duration. The correlation between
vowel dispersion and vowel duration in Munson and Solo-
mon’s study was weak, suggesting that the observed pat-
tern of dispersion did not result from variation in
duration. Watson and Munson (2007) confirmed the associ-
ation of high neighborhood density and increased vowel
dispersion in young adult and elderly adult speakers. A fur-
ther follow-up study (Munson, 2007) likewise reported
greater vowel dispersion for words with high neighborhood
density than words with low neighborhood density, again
using a single-word naming task. Frequency and density
were manipulated factorially in that study and had differ-
ent effects: While high frequency was associated with re-
duced vowel dispersion and shorter vowel durations,
there was no effect of density on duration. The effects of
high density were also found in a delayed naming task,
where participants were asked to respond after a 1000 ms
delay. No effects of frequency on vowel duration or disper-
sion were found in the delayed naming condition. Similar
patterns of greater vowel dispersion for words in dense
neighborhoods were reported in Scarborough (2010), in
which participants produced a set of short sentences with
the target word in final position (though as pointed out in
Flemming, 2010, neighborhood density appears to have
been confounded with segmental context in that study),
and in Kilanski (2009), in which participants produced tar-
get words in a short carrier phrase (‘‘Say __ again.’’).

Scarborough (2009) investigated the degree of nasal
coarticulation (nasality in vowels adjacent to nasal stops)
in monosyllabic words with nasals in syllable onsets (e.g.
snack, next) or rimes (e.g. dunk, home), along with vowel
duration and vowel dispersion. Scarborough found greater
degrees of nasality on the vowels in words from dense
neighborhoods than in words from sparse neighborhoods.
Scarborough further found greater vowel dispersion in
words from dense neighborhoods than in words from
sparse neighborhoods, consistent with the patterns re-
ported in Wright (1997, 2004) and Munson and Solomon
(2004). Vowel duration did not differ across conditions. It
should be noted that neighborhood density in that study
was estimated as the sum of the target word frequency
and the neighbors’ frequency. It is not entirely clear, then,
whether the observed pattern was due to target word fre-
quency or phonological neighborhood density, or both.
Coarticulation was also investigated in an earlier, more
extensive study (Scarborough, 2005). Here, the indepen-
dent variable was the target word frequency relative to
the summed frequency of the target and the frequency of
its phonological neighbors, as a measure of confusability
of the target with its neighbors. It was found that high conf-
usability, based on target frequency relative to summed
neighbor frequency, was associated with increased degrees
of nasal coarticulation and vowel-to-vowel coarticulation.

A further acoustic measure in studies of neighborhood
effects is voice onset time (VOT), i.e. the time between
the release of a stop closure and the onset of subsequent
vocal fold vibration. Goldinger and Summers (1989, cited
in Wright, 1997) found that, when talkers read pairs of
CVC words that differed only in the voicing of the initial
consonant (like bat and pat), VOT differed more in pairs
from dense neighborhoods than in pairs from sparse neigh-
borhoods. A more recent study (Baese-Berk & Goldrick,
2009) found that VOT in monosyllabic (CVC or CVCC)
words with minimal-pair neighbors differing only in voic-
ing of an initial stop consonant, such as pox (vs. box), was
longer than in words that did not have such neighbors,
e.g. posh (vs. �bosh). It was found that this effect was stron-
ger when both words were presented simultaneously on a
computer screen than when only the target word was pre-
sented, without its neighbor. A subsequent study (Peramu-
nage, Blumstein, Myers, Goldrick, & Baese-Berk, 2010)
confirmed that the effect was present even when the min-
imal pair neighbor was not presented in the stimulus set. It
should be noted that the variation in VOT in these studies
was not a function of neighborhood density generally, but
specifically of the existence of a minimal pair differing in
the initial stop consonant.

Few studies of neighborhood density so far have fo-
cused on durational measures, other than the duration of
the target vowel in studies of vowel dispersion. To date,
the most extensive study of effects of neighborhood den-
sity on word or segment duration is Kilanski (2009). As
mentioned above, high neighborhood density was found
in that study to be associated with greater vowel disper-
sion. The duration measures indicated that high-frequency
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words had shorter durations than low-frequency words,
consistent with many previous studies. Interestingly for
the current context, high neighborhood density was also
associated with significantly shorter word and segment
durations. This pattern of shortening in words from dense
neighborhoods appears to have been carried by the vowel
and the word-final consonants (the words in the stimulus
set were CVC words).

The studies mentioned so far used a variety of different
measures of neighborhood density. As mentioned above,
the stimuli examined in Wright (1997, 2004), were con-
tained in a database (Torretta, 1995) classifying words as
‘‘hard’’ or ‘‘easy’’ based on a criterion taking into account
target frequency relative to neighbor frequency along with
neighborhood size. Another measure of neighborhood den-
sity is weighted by the frequency of the neighbors (this
measure is used e.g. in Munson, 2007). Another criterion
that has been used is the sum of the target frequency
and the neighbor frequencies (Scarborough, 2009), or the
log frequency of the target divided by the (log) sum of
the target frequency and the log frequencies of the neigh-
bors (Scarborough, 2005), as an index of the frequency of a
target word relative to its neighbors. Despite these diver-
gent criteria, the pattern that emerges is that high phono-
logical neighborhood density in these studies is associated
with phonetic strengthening as evidenced by vowel disper-
sion and VOT, but not with increased word durations.

Importantly, previous studies of effects of neighborhood
density on pronunciation variation have without exception
focused on words produced in isolation or in short carrier
phrases, such as ‘‘Say __ to me again’’ or ‘‘The first word is
__. The word after __ is ___ ’’ (Scarborough, 2005). This fact
is relevant because the relationship between lexical
retrieval and phonetic realization may very well be task-
dependent. Speakers tend to read word lists at a regular
pace (Kello & Plaut, 2000, 2003), in effect setting themselves
a deadline for each item. If speakers hold speaking rate
constant, then fast lexical retrieval leaves extra time for
pronunciation. By contrast, claims about the effects of word
frequency have for the most part been based on word dura-
tion in conversational speech. This difference is striking, gi-
ven that word frequency is not reliably associated with
shortening when words are produced in isolation or in short
carrier phrases. For example, one study (Geffen & Luszcz,
1983) found that, while lists of high-frequency words were
read aloud more quickly than lists of low-frequency words
when words were blocked by frequency, the difference in
speaking tempo was due to differences in pause duration,
not articulation time (see also Damian, 2003; Guion,
1995; Whalen, 1991; Gahl, 2008, for discussion). Neverthe-
less, there is broad consensus that high word frequency is
associated with reduction, based on connected speech data.
Analogous evidence on effects of neighborhood density on
pronunciation variation in connected speech has not been
available so far. The current study fills that gap.

To preview our results: We find that words with many
neighbors are shorter in duration and contain more cen-
tralized vowels than words with few neighbors, when
other factors influencing word duration and vowel disper-
sion are controlled for.
Methods

We examined the effect of phonological neighborhood
density on two aspects of phonetic realization: word
duration and vowel dispersion. Mixed-effects regression
models were used to bring other known or suspected
determinants of word duration and vowel dispersion un-
der statistical control. We constructed two sets of models
with token duration (in the first set of models) and vowel
dispersion (in the second set) as the outcome variable,
Word type and Talker as random effects, and the variables
described below as fixed effects. All analyses were carried
out using the lme4 (Bates & Maechler, 2010; Bates, Maech-
ler, & Dai, 2008) and languageR (Baayen, 2008b) packages
in R (R Development Core Team, 2008).

All data came from the Buckeye Cos of conversational
speech (Pitt et al., 2007; Pitt, Johnson, Hume, Kiesling, &
Raymond, 2005), which consists of ca. one hour of sponta-
neous speech from each of 40 talkers from Columbus, Ohio,
segmented into utterances, words, and phonological seg-
ments. One half of the talkers were male. One half of the
talkers were under 40 years of age, and half over 40 years
of age.

The current study focused on CVC monomorphemic
content words in the corpus. Information about several of
the control variables, described below, was obtained from
the MRC Psycholinguistics database (Wilson, 1988) and,
the CELEX database (Baayen, Piepenbrock, & van Rijn,
1993). Words which did not appear in these databases
were excluded from the analysis. A total of 175 word types
were excluded because they were frequently used as func-
tion words or as discourse markers (e.g. right or like), their
orthographic forms corresponded to multiple phonological
forms (e.g. read, lead, live and route), or represented per-
sonal names (e.g. Wayne). The corpus contained 594 word
types that met the inclusion criteria. The word types that
were included in the analyses did not differ significantly
in neighborhood density from the word types that were
excluded (mean neighborhood density 21.6 vs. 21.1,
t = �0.57). We divided each talker’s interview into
stretches of speech delimited by changes of turns, non-lin-
guistic sounds such as laughter, and pauses longer than
0.5 s. Stretch-initial and stretch-final word tokens, as well
as word tokens immediately following or immediately pre-
ceding a filled pauses such as um and uh were excluded
from analysis, in order to control variation due to utter-
ance-initial and utterance-final prosody. In addition, we
excluded word types with bigram probabilities of 1. Since
such words generally represent parts of fixed expressions
and/or hapax legomena, their properties may not general-
ize. The final data set contained 534 word types,
represented by 12,414 tokens. A detailed description of
the treatment of the data can be found in Yao (2011).

The Buckeye corpus is not currently annotated for syn-
tactic or prosodic structure, both of which affect word
duration and possibly other aspects of pronunciation (War-
ren, 1996; Watson & Gibson, 2004). Our decision to limit
our investigation to CVC content words, which are all stres-
sable, and to exclude utterance-initial and utterance-final
words, was in large part driven by the desire to control



Table 1
Summary statistics of the numerical variables in the model of word
durations. See text for additional information about each variable.

Median Mean
(SD)

Range

Token duration 241 ms 256 ms (89) 10–1043 ms
Baseline duration 250 ms 252 ms (34) 188–378 ms
Bigram probability, given

the preceding word
.005 .027 (.070) .000–.75

Bigram probability, given
the following word

.005 .030 (.078) .000–.83

Familiarity 7.0 6.95 (0.13) 2.4–7.0
Frequency 523.1 799.1 (763.3) 0.43–3141.0
Neighborhood density

(number of neighbors)
21.0 20.65 (6.84) 3–40

Frequency-weighted
neighborhood density

40.68 43.0 (15.47) 4.4–92.0

Orthographic
length (in letters)

4.0 4.05 (0.70) 3–7

Phonotactic probability
Phoneme probability .046 .048 (.016) .012–.098
Biphone probability .002 .003 (.002) .000–.016

Speech rate (before)
(in syllables/s)

5.94 6.25 (2.28) 0.9–33.3

Speech rate (after) 5.25 5.32 (1.70) 0.42–41.0
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for effects of prosody. Also in an attempt to control for ef-
fects of prosody, we included syntactic and semantic lexical
properties in the model. As we have argued elsewhere
(Gahl, 2008, 2009), measures such as familiarity, imageabil-
ity, and syntactic category capture differences between
words belonging to different syntactic categories, informa-
tion that in turn affects the likely position of a word within
prosodic constituents, and hence, its duration.

The analysis of vowel dispersion further excluded
words with central (schwa-like) vowels and the diph-
thongs. Central vowels such as schwa and /e/ are by their
nature close to the center of vowel space. Studies of vowel
dispersion therefore ordinarily exclude these vowels, along
with the diphthongs /aI, oI, au/, whose degree of dispersion
cannot straightforwardly be measured in the same way as
for monophthongs. These exclusion criteria are the same as
in previous studies of phonological neighborhood density
and vowel dispersion (Munson & Solomon, 2004; Wright,
2004). The exclusion of central vowels and diphthongs
meant that the set of words in the analysis of vowel disper-
sion was a subset of the words in the analysis of word
durations. The two sets of words were analyzed in two sep-
arate models, which we present in turn.
Table 2
Summary statistics of the categorical control variables in the model of word
durations. See text for additional information about each variable.

Age Young (<40): 5450
Old: (>40): 6964

Part of speech Adjective: 2399
Noun: 4530
Verb: 4981
Adverb: 504

Previous mention True: 8811
False: 3603

Sex of talker Female: 5910
Male: 6504
Model 1: word durations

The outcome variable of the model of word duration
was the log-transformed token duration. Durations were
log transformed to take into account the fact that a given
absolute difference in duration will amount to a more min-
or difference in tokens of longer duration. The transforma-
tion was further motivated by inspection of the univariate
distributions: The distribution of log-transformed token
durations was more nearly normal than the distribution
of the raw durations. Log-transforms were also applied to
several of the predictor variables, as noted in the descrip-
tion of each variable. After all relevant transformations,
numerical variables were centered, by subtracting the
mean transformed value from each raw value, following
the recommendations in Baayen (2008a).

The model of word durations included Word type and
Talker as random effects, and the variables described be-
low as fixed effects, presented here in alphabetical order.
Treatment coding was used for categorical predictors.
Summary statistics for the outcome variable and the con-
trol variables are shown in Tables 1 and 2 (for numerical
predictors) (for the categorical predictors).
Age

The corpus annotations only indicate two age groups
(below and above 40 years), so age was included as a bin-
ary categorical variable in the model. The majority of the
talkers mention their age in the course of the interviews,
or reveal their approximate age to within a small number
of years. Talker age ranged from late teens to late seventies,
but was distributed unevenly across age groups. Prelimin-
ary versions of the model included more fine-grained
information on age, with no change in the pattern of
results (Yao, 2011).
Baseline word duration

Phonological segments differ in duration. For example,
tense vowels tend to be longer in duration than lax vowels,
and nasal stops tend to be longer than voiceless oral stops
(Bent, Bradlow, & Smith, 2008; Crystal & House, 1988; Pet-
erson & Lehiste, 1960; Smiljanić & Bradlow, 2008). Word
durations can therefore be expected to vary in part as a
function of their segmental content. We calculated the
average duration of each segment type across the entire
Buckeye corpus (Pitt et al., 2007). We then summed the
average durations of each segment in the citation form of
each word type. That sum represented the word’s Baseline
duration. The Baseline durations were log-transformed and
centered.

The purpose of the Baseline duration variable is to cap-
ture the fact that word durations can be expected to vary
due to segment-level properties, in addition to lexical-level
properties. It will be noted that the Baseline durations
likely overestimate the duration of the word tokens in
our corpus, for two reasons: The Baseline values were
estimates of citation forms, but conversational speech is
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characterized by many segment deletions (Johnson, 2004).
Also, the average segment durations were estimated from
the whole corpus, including utterance-final words and seg-
ments, as well as material before and after speech disfluen-
cies. Since words and segments lengthen in utterance-final
positions and near disfluencies, and since we excluded
utterance-final and disfluent tokens from the regression
analyses, average segment durations in the sample we ana-
lyzed are likely to be shorter.

Bigram probability given the word preceding/following the
target

The probability of a word, given the immediately pre-
ceding or following word in an utterance, has proven a
strong predictor of word durations in connected speech
(Bell et al., 2003; Fosler-Lussier & Morgan, 1999). Bigram
probabilities were estimated based on the entire Buckeye
corpus. As mentioned before, word types with average
bigram probabilities of 1 were excluded from further anal-
ysis. The bigram probabilities were log-transformed and
centered around their respective means.

Familiarity

Subjective familiarity ratings, like frequency estimates,
tend to be significant predictors of the speed of lexical
retrieval (Gernsbacher, 1984; Nusbaum et al., 1984; Pisoni
et al., 1985). Familiarity ratings were those in the MRC Psy-
cholinguistics database (Coltheart, 1981; Wilson, 1988).

Frequency

Frequent words tend to shorten and undergo other
types of phonetic reduction (Bell et al., 2009; Bybee,
2001; Gahl, 2008; Schuchardt, 1885). The frequency mea-
sure used in the current model was each word’s American
English SUBTLEX frequency (Brysbaert & New, 2009). We
adopted this measure because it has been shown to predict
lexical decision times and accuracy better than several
more widely-used measures of word frequency, including
CELEX (Baayen et al., 1993; Kučera & Francis, 1967). For
category-ambiguous items, such as nap, we used the
cumulative frequencies, e.g. the summed frequencies of
the noun nap and the verb nap. The word frequency
variable was log transformed and centered.

Phonological neighborhood density

The number of phonological neighbors for each word
type was obtained from the Hoosier mental lexicon
(Nusbaum et al., 1984).

Orthographic length

The length of each word, in letters. Previous work (War-
ner, Jongman, Sereno, & Kemps, 2004) has shown that
orthographic length can affect word durations even when
segmental content and syllable count are controlled for.
Orthographic length was centered.
Phonotactic probability

Two separate phonotactic probability estimates for
each word type were obtained through the web-based
phonotactic probability calculator (Vitevitch & Luce,
2004). One was the average bi-phone positional probabil-
ity, the other was the average single-phone positional
probability. Since measures of phonotactic probability
and neighborhood density tend to be highly correlated,
and since phonotactic probability has been found to facili-
tate production when neighborhood density is controlled
(Vitevitch, Armbrüster, & Chu, 2004), we examined the
behavior of phonotactic probability and neighborhood
density closely, in a separate set of models, as described
below. The Phonotactic probability measures were log-
transformed and centered.

Previous mention

Using the same word multiple times in a discourse
tends to promote shortening and possibly other types of
phonetic reduction (Bard et al., 2000; Bell et al., 2009;
Fowler, 1988; Fowler & Housum, 1987; Gahl, 2009). This
information was entered into the model as a binary vari-
able coding whether the talker had used the target word
previously in the course of the interview.

Speech rate

Two speech rate measures, both measured as syllables
per second, were coded for each word token: one for the
stretch of speech preceding the target within the utterance,
and the other for the stretch of speech following the target.
The speech rates, measured in syllables per second, were
log-transformed and centered.

Sex

Talker sex was coded as a binary variable, based on the
Buckeye corpus information.

Syntactic category (part of speech)

Each word type was coded as noun, verb, adverb, or
adjective, based on its syntactic category in the CELEX
database. The corpus is not syntactically annotated, and
hand-disambiguating each token was not feasible. For
category-ambiguous items, we therefore used the category
with the highest frequency for that item.

Modeling procedure

We used the following procedure to ascertain which of
the predictor variables significantly predicted word dura-
tion and vowel dispersion: First, we fitted models using
only the control predictors, i.e. without the critical variable
Neighborhood Density, beginning with a model containing
all control variables and retaining only those variables that
showed a significant effect, using an alpha level of .15. Sig-
nificance was estimated based on comparisons between



Table 3
Pairwise (Spearman) correlations between variables in the model of word durations.

Dur Age Base BigrA BigrB Fam Freq Len ND PoS BiPh SPh Prev RateA RateB Sex

Dur 1 0 0.17 �0.09 �0.04 0.05 �0.12 0.05 �0.01 �0.08 �0.03 �0.04 0.1 �0.12 �0.11 0.01
Age 0 1 �0.01 0 �0.01 0 �0.04 �0.01 0 �0.01 0 �0.02 0.06 �0.05 0.01 0.04
Base 0.17 �0.01 1 �0.05 �0.01 0.03 �0.09 0.09 0.17 �0.02 0.04 �0.02 0.09 0.01 �0.01 0
BigrA �0.09 0 �0.05 1 �0.01 �0.11 0.07 �0.05 0.04 �0.12 0.09 0.07 �0.02 �0.06 0.02 0.01
BigrB �0.04 �0.01 �0.01 �0.01 1 �0.01 0.15 0.04 0 �0.21 0.01 0.02 �0.09 0.02 �0.03 0
Fam 0.05 0 0.03 �0.11 �0.01 1 �0.1 0.16 �0.1 �0.18 �0.11 �0.15 0 0 �0.01 0.02
Freq �0.12 �0.04 �0.09 0.07 0.15 �0.1 1 0.06 �0.04 �0.03 �0.06 �0.13 �0.26 0.05 0.04 �0.01
Len 0.05 �0.01 0.09 �0.05 0.04 0.16 0.06 1 �0.28 �0.02 �0.29 �0.38 0.02 0.01 �0.01 �0.03
ND �0.01 0 0.17 0.04 0 �0.1 �0.04 �0.28 1 0.13 0.44 0.44 0.07 0 �0.01 0.02
PoS �0.08 �0.01 �0.02 �0.12 �0.21 �0.18 �0.03 �0.02 0.13 1 �0.16 �0.08 0.07 0.03 0.02 �0.02
BiPhono �0.03 0 0.04 0.09 0.01 �0.11 �0.06 �0.29 0.44 �0.16 1 0.73 0.02 0 0.02 0.01
SPhono �0.04 �0.02 �0.02 0.07 0.02 �0.15 �0.13 �0.38 0.44 �0.08 0.73 1 0.03 0 0.02 0.02
PrevMen 0.1 0.06 0.09 �0.02 �0.09 0 �0.26 0.02 0.07 0.07 0.02 0.03 1 �0.02 �0.02 0.01
RateA �0.12 �0.05 0.01 �0.06 0.02 0 0.05 0.01 0 0.03 0 0 �0.02 1 0.09 0.01
RateB �0.11 0.01 �0.01 0.02 �0.03 �0.01 0.04 �0.01 �0.01 0.02 0.02 0.02 �0.02 0.09 1 0.03
Sex 0.01 0.04 0 0.01 0 0.02 �0.01 �0.03 0.02 �0.02 0.01 0.02 0.01 0.01 0.03 1

Note. Dur = word duration; Age = talker age; Base = baseline word duration; BigrA = bigram probability of the target word, given the following word;
BigrB = bigram probability of the target word, given the previous word; Fam = subjective familiarity rating; Freq = SUBTLEX word frequency;
Len = orthographic length; ND = neighborhood density; PoS = part of speech; BiPhono = biphone positional probability; SPhono = single-phone positional
probability; PrevMen = previous mention; RateA = speech rate following the target; RateB = speech rate preceding the target; Sex = talker sex (see text).
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pairs of models with and without each control variable.
Then, we added Neighborhood Density to the ‘‘control’’
model and used backward elimination to make the final
decisions as to which predictors to retain in the model,
i.e. based on comparisons between successively less com-
plex models. At each step, we removed one variable and
refit the model. We then compared the Log-Likelihoods
of the models with and without the variable in question.
When the null hypothesis is true, the change in Log Likeli-
hood (multiplied by 2) follows a chi-square distribution
(for sufficiently large datasets) with the difference in the
number of parameters between the two models as the de-
grees of freedom. Predictors that did not lead to significant
model improvement, based on this criterion, were elimi-
nated from the model.

In the backward elimination procedure for the models
of word duration, we removed variables in the following
order: (1) Neighborhood Density; (2) speaking rate preced-
ing the target; (3) speaking rate following the target; (4)
bigram probability of the target, given the preceding word;
(5) bigram probability of the target, given the following
word; (6) baseline duration; (7) part of speech; (8) target
word frequency. In the backward elimination procedure
for the models of vowel dispersion, the order was as fol-
lows: (1) Neighborhood Density; (2) vowel duration; (3)
speaking rate following the target word; (4) consonant
duration; (5) bigram probability, given the preceding
word; (6) place of articulation of the consonant preceding
the target vowel. The least complex models of word dura-
tion and vowel dispersion contained only the random ef-
fects (Talker and Word). The p-values associated with the
b coefficients in the final model were estimated using the
procedure described in Baayen, Davidson, and Bates
(2008), based on the posterior distribution of model
parameters generated by Markov Chain Monte Carlo
(MCMC) sampling procedure (10,000 samples). We also
conducted model comparisons comparing the full model
to models omitting each of the predictors in turn. Each of
the predictors in the final models that we arrived at using
backward elimination yielded significant model improve-
ment based on those comparisons, and the direction of
predicted effects was the same for all predictors regardless
of modeling strategy. In prior work (Yao, 2011) and in pre-
liminary work for the current study, we explored the
behavior of the control variables further. Since the order
in which predictors are included affects the resulting mod-
els, we were interested to see whether the behavior of the
Neighborhood Density variable remained stable under var-
ious different orders of entry. This was found to be the
case.

Table 3 shows the bivariate correlations between pairs
of variables in the final model.
Word duration model: results

Six predictors – Talker Age, Sex, Orthographic length,
Familiarity, Imageability, and Previous mention – did not
yield significant model improvement based on the change
in log-likelihood and were eliminated. We also explored
some non-linear relationships between predictors and
word duration, by testing the ability of quadratic and cubic
functions of the continuous predictor variables to improve
the model. This was the case for the quadratic effect of
Speaking rate in the region preceding the target word.
We also examined the interaction between Neighborhood
size and word frequency, and the three-way interaction
between neighborhood size, frequency, and Sex. Neither
of these produced significant model improvement, so they
were eliminated from the final model. With random effects
and fixed effects, the final model accounted for 41% of the
observed variability in word duration. A model with only
the random effects (Word and Talker) and without any
fixed effects accounted for 38% of the variance. A compar-
ison of the random-effects-only model vs. the model with
the fixed effects showed that including the fixed effects re-



Table 4
Summary of the model of word durations.

Variable name b SE t pMCMC AIC v2 p(v2)

(Intercept) 0.1404 0.0295 4.759 .0001 3652.1
Frequency �0.0281 0.0044 �6.407 .0001 3575.2 78.86 (1) <.0001
PoS 3538.9 42.28 (3) <.0001

Adverb �0.072 0.0653 �1.101 .2334
Noun 0.0202 0.02 1.009 .2036
Verb �0.0896 0.0206 �4.357 .0001

BaselineDur 0.6442 0.0525 12.266 .0001 3406.8 134.11 (1) <.0001
Bigr_After �0.0249 0.0014 �17.814 .0001 3159.8 249.03 (1) <.0001
Bigr_Bef �0.0149 0.0016 �9.539 .0001 3081.6 80.19 (1) <.0001
Rate_After �0.1382 0.0079 �17.514 .0001 2756.2 327.39 (1) <.0001
Rate_Bef �0.0864 0.0075 �11.533 .0001 2627.7 130.48 (1) <.0001
Rate_Bef, squared �0.0263 0.011 �2.389 .0156 2624 5.67 (1) .0172
Neighb.Density �0.0044 0.0009 �5.084 .0001 2600.6 25.42 (1) <.0001

Table 5
Random effects in the model of word durations.

Random effect SD MCMC
median

HPD95lower HPD95upper

Word
(intercept)

0.0983 0.0829 0.0750 0.0911

Speaker
(intercept)

0.0897 0.0874 0.0698 0.1096

Residual 0.2621 0.2632 0.2598 0.2666
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duced the standard deviation of the random effect for
Word by 42%.

Model comparisons also revealed that including ran-
dom slopes for the neighborhood density variable did not
yield significant model improvement. This is unsurprising,
given that many words in our sample only occurred a very
small number of times in the speech of a given talker.
Given the large number of control variables, we were con-
cerned about possible multicollinearity. We assessed the
degree of collinearity following the procedure in Baayen
(2008a, 2008b). The condition number for the model of
word durations was 6.4, suggesting a level of multicolline-
arity that is unlikely to be problematic (Belsley, Kuh, &
Welsch, 1980, cited in Baayen, Wurm, & Aycock, 2007). A
summary of the final model is shown in Tables 4 and 5.

The relationship of the control variables to word dura-
tion was what one would expect, given previous studies:
Longer Baseline duration was associated with longer word
durations. Increasing Frequency, Bigram probabilities, and
Speaking rates were associated with shorter word dura-
tions. The proportion of variability accounted for is low
compared to some previous models of word and segment
duration in connected speech (Bell et al., 2009; Gahl,
2008; Quené, 2008). This difference is likely to be due in
part to the fact that the studies just cited included utter-
ance-final and pre-pausal tokens. Phrase-final position
and disfluencies produce large effects on word duration,
making it possible to account for a substantial portion of
variability in duration based on these two predictors alone.

Crucially for the point of the study, increased Neighbor-
hood density was associated with shorter word durations.
Comparison of models with and without this predictor
indicates that including this variable resulted in a signifi-
cant improvement in model fit (v2(1) = 25.42, p < .0001).
The contribution of neighborhood density to word dura-
tion, although subtle, approaches that of well established
predictors of duration: The difference between the pre-
dicted word durations of words with the smallest vs. the
largest number of neighbors was 40 ms (269 vs. 229 ms
when other predictors are held at their median values).
For comparison, the difference in predicted duration of
words with the lowest vs. highest frequency in the dataset
was 61 (300 ms. vs. 239 ms.).

Fig. 2 shows the partial effects of all fixed effects in the
final model of word durations.

Given the high bivariate correlation between neighbor-
hood density, i.e. the critical variable of interest, and
phonotactic probability measures, we scrutinized the
behavior of these variables in a separate set of modeling
steps, as follows: We first fitted simple linear regression
models, predicting neighborhood density from phonotactic
probability and vice versa. The residuals of these models
represent the portion of variability in one variable (e.g.
Neighborhood density) not attributable to the other (e.g.
Phonotactic probability). We then added the resulting
residuals to our mixed-effects regression models of word
durations. This allowed us to see the individual contribu-
tion of Phonotactic probability and Neighborhood density
to variability in word duration.

We used two different measures of Phonotactic proba-
bility: The single-phone positional probability and the bi-
phone positional probability (Vitevitch & Luce, 2004).
Since these two measures are highly correlated with neigh-
borhood density and with one another (r = .62 for the
correlation between biphone positional probability and
neighborhood density, r = .58 for the correlation between
single-phone positional probability and neighborhood
density in our data), separate linear regression models
were fitted, regressing neighborhood density on each pho-
notactic probability measure in turn. The simple regression
models are summarized in Table 11 in the Appendix.

The effects of neighborhood density were stable, regard-
less of whether phonotactic probability or neighborhood
density were given a chance to explain the variability that
could be attributed to phonotactic probability or to neigh-
borhood density: In all models, neighborhood density, or
the residual neighborhood density measure representing
density not attributable to Phonotactic probability, neigh-



Fig. 2. Partial effects, Word duration model.
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borhood density was associated with shorter word dura-
tions (all pMCMC < .0001).

The effects of phonotactic probability were more vari-
able: When single phone positional probability was given
a chance to explain all the variability attributable to neigh-
borhood density or phonotactic probability, it did not yield
a significant effect (t = �1.46, pMCMC = .17), while residual
neighborhood density remained significant (t = �5.92,
pMCMC < .0001). Likewise, when biphone positional proba-
bility was given a chance to explain all the variable attrib-
utable to neighborhood density or phonotactic probability,
it also did not yield a significant effect (t = �0.74,
pMCMC = .50), while residual neighborhood density still
remained significant (t = �5.84, pMCMC < .0001). On the
other hand, in models where neighborhood density was gi-
ven a chance to explain all the variability ambiguously
attributable to density or phonotactic probability, residual
single-phone and residual biphone positional probability
were each associated with lengthening to a significant or
marginally significant degree (t = 3.02, pMCMC = .009 for
single-phone probability; t = 1.74, p = .09 for biphone posi-
tional probability); in both of these latter models, neigh-
borhood density was associated with significant degrees
of shortening (t = �6.008, pMCMC = .0001 and t = �5.25,
pMCMC = .0001, respectively). We conclude that the ob-
served effect of neighborhood density is unlikely to be
due to phonotactic probability.
Whereas the model just described measures neighbor-
hood density as the number of neighbors, some earlier
studies (e.g. Munson, 2007) used a frequency-weighted
measure of neighborhood density. To facilitate comparison
of our results to those earlier studies, we repeated the anal-
ysis, this time using a frequency-weighted measure of pho-
nological neighborhood density (the sum of the neighbors’
log frequencies). The frequency-weighted measure of
neighborhood density was associated with shorter word
durations (t = �5.2.91, pMCMC = <.0001), just like the un-
weighted measure of neighborhood size. The pattern of
significance and the direction of the predicted effects also
remained unchanged.

In summary, the models of word duration suggest that,
other things being equal, words with many phonological
neighbors are shorter than words with few neighbors. To
examine the effect of phonological neighborhood density
on phonetic reduction more closely, and to facilitate com-
parison of our data with earlier studies, we now turn to the
analysis of vowel dispersion.

Model 2: vowel dispersion

Methods

The data set for the analysis of vowel dispersion was
smaller than the data set for word durations, in part due



Table 6
Summary statistics for the outcome variable and the numerical predictors
in the model of vowel dispersion.

Median Mean
(SD)

Range

Degree of dispersion �0.01 0.00 (0.98) �3.76–5.53
Bigram probability

(preceding)
.005 .026 (.079) .000–.75

Bigram probability
following)

.005 .031 (.079) .000–.83

Consonant duration 137.8 145.0 (55.8) 0.0–632.1
Frequency 523.10 767.90 (699.04) 0.43–2610.0
Neighborhood density 21 21.15 (6.96) 3–40
Frequency-weighted

neighborhood
density

44.3 44.48 4.4–92.00

Orthographic length 4 4.005 (0.72) 3–7
Phonotactic probability

Single-phoneme
probability

.049 .049 (.016) .012–.098

Biphone probability .002 .003 (.002) .000–.016
Speech rate (preceding)

(ms/syl)
5.94 6.24 (2.29) 0.95–33.33

Speech rate (following) 5.23 5.31 (1.68) 0.88–41.0
Vowel duration (ms) 92 103 (0.05) 25–490
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to the exclusion of central vowels and diphthongs. One
speaker’s data (speaker s35, 222 tokens) were removed
due to errors in the transcript, which contained incorrect
time labels for a sizable portion of the vowels. An
additional 125 word tokens had to be excluded because ex-
tremely short durations or low intensity precluded reliable
formant measurements. The final dataset for the analysis
of vowels contained 414 word types, represented by
9075 tokens from 39 talkers.

Vowel formant analyses were carried out using Praat
(Boersma & Weenik, 2002–2005). The onset and offset of
the vowels were those in the Buckeye segmentation. The
duration of the analysis window was 25 ms, and the time
steps were 2.5 ms. For each token, we extracted the mean
F1 and F2 over the middle 50% of the vowel. Tokens with
mean formant values at least 2.5 standard deviations away
from the speaker- and vowel-specific means were manu-
ally checked: Where possible, formants for such tokens
were measured by hand. Tokens for which estimates of
the formant values were impossible to obtain, e.g. because
of excessively short duration, were removed from the data-
set. Fewer than 1% of the tokens in the database were
removed for this reason. Further details about the treat-
ment of the data and preliminary analyses can be found
in Yao (2011).

The center of each talker’s F1/F2 space was estimated
by obtaining the average F1 and F2 values for the mid cen-
tral vowel [V] in all CVC monomorphemic content words
(e.g. hub) produced by that talker (41 tokens on average).
Fig. 1 above shows the vowel space of one of the talkers
(s26, female). The center of the talker’s F1/F2 space is
marked with a plus sign.

Following earlier work (Bradlow et al., 1996), vowel
dispersion was quantified as mean Euclidean distance be-
tween the F1 and F2 of each vowel token and the center
of each talker’s F1/F2 space. That distance measure was
then normalized, to control for between-vowel differences
in vowel dispersion: For example, tokens of the vowel [i]
are further from the F1/F2 center, on average, than tokens
of the vowel [A]. We calculated the standardized distance
of each token as a z-score, i.e. as the difference between
the token’s distance from the F1/F2 center and the mean
distance from the center for all tokens of a given vowel
type, divided by the standard deviation of the distance
from the center for all tokens of a given vowel type. In-
creased distance from the F1/F2 center, compared to other
tokens of a given vowel, increases standardized distance.

Normalizing the distance measurements in this way
meant that the exact location of the designated center of
each speaker’s vowel space would not substantially affect
the results: The standardized distance represented the dis-
tance of particular token from the center, relative to the
typical distance from the center for tokens of that vowel
type for a given speaker. For example, tokens of the vowel
[i] have a certain average distance from whatever reference
point one might choose. The standardized distance of a
particular token is the difference between the token’s F1/
F2 coordinates and the coordinates of the average [i] val-
ues, normalized by the standard deviation of F1/F2 values
of [i] (to take into account the spread of F1/F2 values for
tokens of [i]). If the chosen reference point were at an ex-
treme point of the vowel space, the estimates of standard-
ized distance would be distorted. To check whether the
choice of reference point unduly affected the outcome,
we repeated our analyses using a different center, based
on the average F1/F2 of two sets of four non-schwa vowels
([A, æ, i, o] and [A, æ, i, u], respectively). The pattern of re-
sults was unchanged.

The model included Word type and Talker as random
effects. Most of the fixed-effect variables in the vowel dis-
persion model were the same as in the word duration
model. The model of vowel dispersion additionally in-
cluded several variables, described below, that pertain to
the analysis of single segments. As in the model of word
duration, continuous variables were centered and log-
transformed where appropriate. Tables 6 and 7 present
summary statistics of the numerical (Table 6) and categor-
ical (Table 7) variables. Table 8 shows the pairwise correla-
tions between the predictors.

The following variables were specific to the vowel dis-
persion model:

Vowel duration
Vowel dispersion is in part a function of vowel duration

(Lindblom, 1964), both in that short vowels have a ten-
dency to centralize, and in that the formants of short vow-
els tend to be similar to those of surrounding consonants.
Therefore, reduced vowel dispersion could easily result
from variation in vowel duration alone. We therefore en-
tered vowel duration in the model. Vowel durations were
log-transformed and centered.

Consonant duration
To control for effects of word duration outside of the

target vowel itself, we also controlled for the duration of
the consonants preceding and following the target vowel,
i.e. the target word duration minus the duration of the vo-
wel (recall that all target words were CVC words). Dura-
tions were log-transformed and centered.



Table 7
Summary statistics for categorical variables in the vowel dispersion
database.

Vowel type [A]: 1193
[æ]: 824
[e]: 1263
[eI]: 1341
[I]: 1555
[i]: 828
[o]: 788
[f]: 918
[u]: 365

Manner of articulation
(preceding)

Approximant ([l], [j], [w], [r]): 1643

Nasal ([m],[n],[N]): 1092
Obstruent (oral stop, fricative, affricate):
6340

Manner of articulation
(following)

Approximant ([l], [j], [w], [r]): 1653

Nasal ([m],[n],[N]): 1401
Obstruent (oral stop, fricative, affricate):
6021

Place of articulation
(preceding)

Front (bilabial, alveolar, labial dental,
labial-alveolar): 7137
Back (velar, glottal): 1938

Place of articulation
(following)

Front (bilabial, alveolar, labial dental,
labial-alveolar): 6643
Back (velar, glottal): 2432

Speaker sex Female: 4434, Male: 4641

Speaker age Young: 4177, Old: 4898

Part of speech Adverb: 483
Adjective: 1994
Noun: 2618
Verb: 3980

Previous mention True: 6423
False: 2652
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Place and manner of articulation (before, after the target
vowel)

Neighboring consonants can affect vowel formants, due
to coarticulation. For example, vowels near nasal conso-
nants tend to have lower F2 values, whereas vowels near
alveolar consonants tend to have higher F2 values. To con-
trol for the influence of the consonants in the target words,
we added categorical variables coding place (front vs. back)
and manner (glide vs. nasal vs. obstruent) of the conso-
nants preceding and following the target vowel.

Results: vowel dispersion model

Several variables (Vowel type, Talker age, Sex, Fre-
quency, Part of speech, Manner of articulation of the pre-
ceding consonant, Voicing of neighboring segments,
Bigram probability given the following word, and Previous
mention) were not associated with significant model
improvement and were removed from the model. Random
slopes for neighborhood density also did not improve the
model and were eliminated. Neither the Frequency � Den-
sity interaction, nor the three-way interaction of Fre-
quency, Density and Sex, yielded significant effects. The
control variables that did give rise to significant effects in
the final model did so in the expected direction: Other
things being equal, vowels were more centralized (less dis-
persed) following non-back consonants, and before
stretches of speech with higher speaking rates. Vowels
were more dispersed in tokens with greater vowel and
consonant durations. The model accounted for 34% of the
observed variability in vowel dispersion. The final model
is summarized in Tables 9 and 10. The partial effects are
shown in Fig. 3.

Turning to the neighborhood density variable, we ob-
served that high neighborhood density and squared neigh-
borhood density were both associated with reduced vowel
dispersion, to a significant degree (Neighborhood density:
t = �2.189, pMCMC = .029; Squared neighborhood density:
t = �2.858, pMCMC = .004).

We examined the contribution of phonotactic probabil-
ity, using the same residualization and model comparison
techniques as with the model of word durations: We resid-
ualized neighborhood density on phonotactic probability
and vice versa using simple linear regression. We then fit-
ted mixed-effects models with the same random and fixed
effects as in the final model of vowel dispersion, except
that instead of the measure of neighborhood density, we
entered fixed effects probing the contributions of neigh-
borhood density and phonotactic probability. For example,
in one model, single-phone positional probability was
entered along with residual neighborhood density, i.e. the
variability in neighborhood density that could not be pre-
dicted from single-phone positional probability.

The pattern of results was simple. Measures of phono-
tactic probability (single-phone positional probability and
biphone probability) did not give rise to significant effects
in any of these models, regardless of whether phonotactic
probability was residualized on neighborhood density or
the other way around (all t < 1.8, all pMCMC > .18). Neigh-
borhood density, by contrast, gave rise to a significant ef-
fect in all models and was consistently associated with
decreased vowel dispersion. This was the case regardless
of whether neighborhood density was regressed on a mea-
sure of phonotactic probability or vice versa (all |t| > 2.25,
all pMCMC < .03). We conclude that the observed effect of
neighborhood density was unlikely to be due to phonotac-
tic probability. We note that the inability of Phonotactic
probability to account for variability in vowel dispersion
may have to do with competition from the Place of
articulation variable, which models some of the same seg-
ment-to-segment coarticulatory effects that would lead
one to expect effects of phonotactic probability.

To facilitate comparison of our results to earlier studies,
we also fitted a model with a frequency-weighted measure
of neighborhood density, in place of the neighborhood size
variable. The frequency-weighted density measure did not
yield a significant effect (b = �0.021, t = �0.125, pMCMC =
.90).

An anonymous reviewer points out that there is some
evidence suggesting a tendency for talkers to produce no-
vel dialectal variants more readily in contexts that are
predictable semantically (Clopper & Pierrehumbert, 2008)
or based on word frequency or frequency-weighted neigh-
borhood density (Watson & Munson, 2007). The effect we
observed was not restricted to particular vowel types,
which one would expect if the pattern were driven by



Table 8
Pairwise (Spearman) correlations between continuous variables in the model of vowel dispersion.

Disp BigrB BigrA CDur Fq ND NDFq Len SPhono BiPhono RateB RateA VDur

Disp 1 �0.01 0 0.1 �0.06 �0.02 �0.01 0.02 0.04 0.02 �0.01 �0.06 0.05
BigrB �0.01 1 0.11 �0.17 0.33 �0.08 �0.17 0.04 0.04 0.07 �0.02 0.04 �0.04
BigrA 0 0.11 1 �0.14 0.26 �0.02 �0.04 �0.05 �0.04 0.02 0.02 �0.07 �0.2
CDur 0.1 �0.17 �0.14 1 �0.23 0 �0.06 0.04 0.1 0.03 �0.14 �0.18 0.2
Fq �0.06 0.33 0.26 �0.23 1 �0.09 �0.22 0.03 �0.11 �0.1 0.05 0.07 �0.17
ND �0.02 �0.08 �0.02 0 �0.09 1 0 �0.22 0.61 0.57 �0.01 0 0.12
NDFq �0.01 �0.17 �0.04 �0.06 �0.22 0 1 �0.23 0.06 �0.01 0 �0.01 �0.06
Len 0.02 0.04 �0.05 0.04 0.03 �0.22 �0.23 1 �0.34 �0.25 0 0.02 0.03
SPhono 0.04 0.04 �0.04 0.1 �0.11 0.61 0.06 �0.34 1 0.79 0.01 0.02 �0.07
BiPhono 0.02 0.07 0.02 0.03 �0.1 0.57 �0.01 �0.25 0.79 1 0 �0.01 0
RateB �0.01 �0.02 0.02 �0.14 0.05 �0.01 0 0 0.01 0 1 0.17 �0.14
RateA �0.06 0.04 �0.07 �0.18 0.07 0 �0.01 0.02 0.02 �0.01 0.17 1 �0.14
VDur 0.05 �0.04 �0.2 0.2 �0.17 0.12 �0.06 0.03 �0.07 0 �0.14 �0.14 1

Note. Disp = vowel dispersion; BigrA = Bigram probability of the target word, given the following word; BigrB = Bigram probability of the target word, given
the previous word; CDur = consonant duration; Fq = target word frequency; ND = neighborhood density; NDFq = frequency-weighted neighborhood den-
sity; Len = orthographic length; SPhono = single-phone positional probability; BiPhono = biphone positional probability; RateB = speech rate preceding the
target; RateA = speech rate following the target; VDur = vowel duration; (see text).
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dialect variation. We therefore believe that dialect varia-
tion is unlikely to be the source of the effect.

There is some evidence in previous studies (Munson,
2007; Munson & Solomon, 2004) of an interaction between
frequency and neighborhood density, such that the effect
of neighborhood density was stronger, or possibly re-
stricted to, low-frequency words. We did not observe such
an interaction. Nevertheless, it is of course possible that
some effects of neighborhood density are restricted to, or
are strongest in, low-frequency words, which are under-
represented in spontaneous speech corpora.

In summary, neighborhood density – the number of a
word’s neighbors in the lexicon – was associated with re-
duced vowel dispersion.

Discussion

Our central finding was that, in conversational speech,
words from dense phonological neighborhoods were
shorter and contained more centralized (less dispersed)
vowels than words from sparse phonological neighbor-
hoods. These findings resemble a familiar pattern of pho-
netic reduction in words that are of high frequency or
high contextual predictability (Aylett & Turk, 2006; Bell
et al., 2003, 2009; Gahl, 2008).

Our aim in investigating the effects of neighborhood
density on word durations and vowel dispersion was to
understand the role of lexical retrieval and intelligibility
in pronunciation variation of predictable forms. Neighbor-
hood density provides a means to adjudicate between
competing explanations of pronunciation variation, be-
cause it has been shown to yield facilitative effects on
production (Stemberger, 2004; Vitevitch, 1997, 2002), yet
detrimental ones on intelligibility (e.g. Vitevitch & Luce,
1998). Therefore, production-based accounts of pronuncia-
tion variation lead one to expect phonetic reduction of
words in dense neighborhoods, whereas intelligibility-
based accounts would lead one to expect the opposite.
Our findings are consistent with the predictions of
production-based accounts of pronunciation variation in
spontaneous speech.
We begin our discussion by considering some limita-
tions of the current study, before comparing our findings
to those reported in earlier studies.

Limitations and alternative explanations for the
observed pattern

Some limitations of the current study are inherent in
data from spontaneous speech: Our findings may reflect
uncontrolled variation in the corpus. Secondly, our mea-
sure of neighborhood density was based on citation forms.
Conversational speech is characterized by many instances
of omissions of segments or entire syllables (Johnson,
2004). In fact, this was one of the reasons for our decision
to restrict our analysis to tokens in which all segments
present in the citation form were actually produced. It re-
mains as a topic for future research whether neighborhood
density effects in conversational speech perhaps reflect
neighborhood characteristics of forms as they are actually
produced. Furthermore, like all previous studies of the ef-
fects of neighborhood density on pronunciation variation,
we used a position-independent measure of neighborhood
density, meaning that ‘‘cap’’ and ‘‘fat’’ were counted
equally as neighbors of ‘‘cat’’. As an estimate of lexical
competition, that measure is problematic in a number of
ways (see Goldrick et al., 2010).

The uncontrolled nature of conversational speech data
makes it especially important to consider alternative
explanations of the observed patterns. One candidate for
such an alternative might be word frequency: The measure
of word frequency that we chose (Brysbaert & New, 2009)
has been shown to be a good predictor of lexical decision
and naming times. The decision to use a corpus-external
frequency measure leaves open the possibility that our
results might have been due to a positive correlation be-
tween phonological neighborhood density and corpus-spe-
cific word frequency. We therefore examined the role of
frequency within the corpus in a set of follow-up analyses.

The Buckeye corpus consists of one-on-one interviews.
As a result, many words, particularly content words, occur
frequently in some interviews, and hence in the speech of



Table 9
Summary of fixed effects in the model of vowel dispersion.

Variable name b SE t pMCMC v2 p(v2)

(Intercept) 0.4898 0.1190 4.117 0.0000
MannerAfter 9.46 0.0089

Nasal �0.1591 0.1257 �1.266 0.2055
Obs �0.2902 0.0950 �3.055 0.0023

PlaceBeforeFront �0.3944 0.0981 �4.020 0.0001 15.75 < 0.0001
BigramBefore �0.0143 0.0059 �2.413 0.0158 5.82 0.0160
BigramBefore2 �0.0064 0.0059 �2.680 0.0074 7.18 0.0074
CDur 0.1828 0.0280 6.521 0.0000 41.97 < 0.0001
CDur2 0.0737 0.0158 4.660 0.0000 21.60 < 0.0001
SpeechRateAfter �0.0977 0.0286 �3.412 0.0006 11.36 0.0008
SpeechRateBefore 0.0591 0.0265 2.233 0.0256 4.84 0.0278
VDur 0.1569 0.0338 4.637 < 0.0001 21.33 < 0.0001
VDur2 0.1824 0.0279 6.546 < 0.0001 42.74 < .0001
VDur3 �0.0644 0.0328 �1.962 0.0498 3.84 0.0500
Neighborhood density �0.0114 0.0052 �2.189 0.0286 4.76 0.0291
Neighborhood density2 �0.0016 0.0006 �2.858 0.0043 8.07 0.0045

Table 10
Random effects in the model of vowel dispersion.

Random
effect

SD MCMC
median

HPD95lower HPD95upper

Word (Intercept) 0.609 0.4235 0.3904 0.4582
Speaker (Intercept) 0.031 0.0221 0.0000 0.0497
Residual 0.813 0.8250 0.8131 0.8369

Fig. 3. Partial effects, vow
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some talkers, but not in others. Overall frequency in the
corpus is a poor index of word frequency in any one talk-
er’s speech. To check if the observed effect was due to
usage frequency within the corpus, we therefore examined
the relationship between talker-specific word frequency
and neighborhood density: If words used frequently by
individual talkers tended to reside in dense neighborhoods,
then the observed pattern of reduction of high-density
el dispersion model.
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words could have come about due to talker-specific fre-
quency in our sample. To investigate this possibility, we
determined, for each talker, the Spearman rank correlation
between talker-specific word frequency and neighborhood
density. These correlations turned out to be weak, ranging
from �.10 to .02. A total of 33 out of these 40 correlations
were negative, three of them significantly so at an alpha le-
vel of .05. None of the seven positive correlations were sig-
nificant at an alpha level of .05 (all p > .65). In light of this,
we consider it unlikely that the observed association of
high neighborhood density with shortening and vowel
reduction was due to talker-specific word frequency in
the Buckeye corpus. If anything, there was a slight ten-
dency for words in dense neighborhoods to occur less
frequently in a given interview; therefore, effects of
corpus-specific frequency should counteract the overall
observed association of high neighborhood density and
reduction.

The more general possibility remains, of the observed
effect resulting from uncontrolled variation. For example,
our model does not control for effects of upcoming mate-
rial, except through the bigram probability of the target
word given the word immediately following it. Future,
more complete, models of spontaneous speech generally,
and of the Buckeye corpus in particular, may provide alter-
native explanations for the observed pattern.

Comparison to previous results

Previous studies (Kilanski, 2009; Munson, 2007; Mun-
son & Solomon, 2004; Watson & Munson, 2007; Wright,
1997, 2004) found increased vowel dispersion for words
in dense neighborhoods compared to words in sparse
neighborhoods, contrary to our findings. What might ac-
count for this apparent discrepancy? We see several meth-
odological differences, including the different measures of
neighborhood density and our use of a normalized mea-
sure of vowel dispersion. We discuss these differences
next, before turning to what we believe is the main source
of differences between our results and previous studies,
which is the fact that our observations are based on con-
versational speech, as opposed to single-word production.

As mentioned above, using a frequency-weighted mea-
sure of neighborhood density in place of the measure of
neighborhood size left the pattern of results unchanged
in the model of word duration. When entered into the
model of vowel dispersion, frequency-weighted neighbor-
hood density did not give rise to a significant effect. It is
thus possible that our use of an unweighted neighborhood
density measure was responsible for the difference in find-
ings concerning vowel dispersion.

Our use of a normalized measure of vowel dispersion
constitutes another source of differences between the
present findings and previous results. Whereas the greater
dispersion of vowels in ‘‘hard’’ words in Wright (1997,
2004) was only observed in the ‘‘point’’ vowels /i,A,u/, we
found an across-the-board effect of neighborhood density
on vowel dispersion, for all vowel types. Presumably, our
dispersion normalization procedure is responsible for part
of this difference: Despite vowel-to-vowel differences in
absolute dispersion, when dispersion is expressed as a
z-score relative to the range of acoustic variation typically
seen for a particular vowel, the degree of dispersion is seen
to be constant across vowels. Normalization does not
change the direction of the result, but the normalization
procedure may explain why the observed effect did not de-
pend on vowel type in our data.

We suspect that the main reason for the discrepancy
between previous findings and ours is the fact that we
examined conversational speech, as opposed to words pre-
sented in isolation or in short carrier phrases. It is clear
that temporal characteristics of the material analyzed in
previous studies differ from ours: Wright (1997, 2004),
for example, presented words one at a time and instructed
talkers to say each word ‘‘at a ‘medium’ rate’’ (Wright,
1997, p. 475). Even when speakers are not specifically in-
structed to keep their speaking rate constant, they tend
to produce word lists at an even pace (Kello & Plaut,
2000, 2003). By contrast, the current study is based on
word tokens excised from running conversational speech,
which is highly variable and very fast, compared to words
produced in isolation (Bard & Aylett, 2005). As importantly,
attentional demands in elicited isolated utterances and
conversational speech differ. We believe that these differ-
ences in temporal and attentional constraints may explain
the apparent discrepancy between the current findings and
previous studies.

Increased vowel dispersion is associated with greater
intelligibility (Bradlow et al., 1996). Given that neighbor-
hood density inhibits word recognition, it is natural to
attribute variation in vowel dispersion to speakers’ at-
tempts to maximize intelligibility, and several previous ac-
counts have done so (e.g. Scarborough, 2005; Wright, 1997,
2004), building on Lindblom (1990). Previous authors have
also noted other possible explanations for the increased
vowel dispersion for words in dense neighborhoods, based
articulatory target drift (Pierrehumbert, 2001) and percep-
tual factors unrelated to speakers’ attempts to modify
intelligibility (Baese-Berk & Goldrick, 2009; Munson,
2007; Munson & Solomon, 2004). For example, Baese-Berk
and Goldrick (2009) attribute their observed pattern of
longer VOTs for words with minimal-pair neighbors differ-
ing only in voicing of an initial stop consonant (pox vs. box),
compared to words without such neighbors (posh vs. �bosh)
to ‘‘higher activation levels for words in dense neighbor-
hoods’’ (Baese-Berk & Goldrick, 2009, p. 531). Activation,
in the model that study is situated in, models lexical retrie-
val speed. If Baese-Berk and Goldrick’s proposal is correct,
then faster retrieval speed for production might be associ-
ated with maximally intelligible pronunciation more gen-
erally – or more accurately, with the more precise
realization of articulatory targets. High word frequency
has been argued to cause articulatory targets to ‘‘drift’’ to-
wards more phonetically reduced productions (Pierrehum-
bert, 2001); high neighborhood density, by contrast, does
not have this effect. Taken together with the current re-
sults, and with the observation that word lists tend to be
produced at a regular pace (Kello & Plaut, 2003), Baese-
Berk and Goldricks’ and Pierrehumbert’s proposals leads
to a different understanding of the previously observed
association of high neighborhood density and intelligibil-
ity: Given that people tend to read word lists at an even



Table 11
Summary of simple linear regression models relating neighborhood density and phonotactic probability (N = 534).

Model b (SE b) R2 Quantity represented by model residuals

ND�SPhono 13.77 (.75) .39 rNDS = variability in neighborhood density not attributable to single-phone positional probability
ND�BiPhono 6.33 (.39) .33 rNDBi = variability in neighborhood density not attributable to biphone positional probability
SPhono�ND .03 (.002) .39 rSPhono = variability in single-phone positional probability not attributable to neighborhood density
BiPhono�ND .05 (.003) .33 rBiPhono = variability in biphone positional probability not attributable to neighborhood density
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pace, fast retrieval leaves speakers time to realize extreme
articulatory targets, which in turn tend to be highly
intelligible.

Production speed aside, conversational speech may also
create different attentional demands than word lists or
short, scripted utterances. In single-word naming tasks,
for example, speakers are only faced with the task of plan-
ning whatever word is required for the current trial. Con-
versational speech, on the other hand, requires the
language production system to coordinate grammatical
and phonological encoding of upcoming material during
lexical retrieval, phonological encoding, and articulation
of current targets. In single-word naming tasks, this is
not the case, freeing speakers to realize more or less
extreme articulatory targets as temporal and attentional
demands allow, and as articulatory target selection may
favor.
Conclusion

Neighborhood density effects in conversational speech
yielded a pattern of shortening and vowel centralization
in words that are generally found to be challenging targets
for word recognition, yet easy production targets. Our
findings are consistent with the generalization that pro-
nunciation variation associated with lexical access and re-
trieval – ‘‘early’’, automatic processes in language
production – are speaker-centric (Bard & Aylett, 2005). In
our view, these results are fully compatible with the notion
that variation at some levels of linguistic structure, with
different levels of planning and encoding, may reflect
speakers’ models of their listeners and of their surrounds.
Clearly, speakers do take their listeners’ needs into ac-
count, and this fact is reflected in referential form and
other dimensions of linguistic structure (Arnold, 2008;
Brennan & Clark, 1996). More generally, we see no reason
to doubt, for example, the pervasiveness of foreigner talk,
‘‘clear speech’’, or baby talk or the host of speech phenom-
ena signaling linguistic group affiliation, as revealed in
sociophonetic research.

Previous research studying situations in which speak-
ers’ and listeners’ needs are pitted against each other sug-
gests limits of intelligibility-based behavior (Arnold, 2008;
Bard & Aylett, 2005; Ferreira, 2008; Ferreira & Dell, 2000),
partly as a function of demands on attention and working
memory (Wardlow Lane & Ferreira, 2008; Wardlow Lane,
Groisman, & Ferreira, 2006). Our findings suggests that
conversational speech is a situation of just this kind. It is
our hope that they current study will inspire further scru-
tiny of the mechanisms – be they production-based or
otherwise – linking what is known about lexical access
and retrieval to the study of the phonetic realization of
conversational speech.
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