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1. Introduction 

A recent analysis of a corpus of spontaneous speech (Gahl, 2008) showed that 
homophone pairs differed in duration as a function of word frequency. For example, the 
high-frequency word time was shorter on average than its less-frequent homophone twin 
thyme. This effect persisted when other factors affecting word duration were statistically 
controlled for in a linear regression model. However, that model had several serious 
limitations. The goal of the current study is to overcome these limitations and to explore 
the determinants of word duration further.  

The model presented in Gahl (2008) was a linear regression model. Its outcome 
variable was the average duration of the higher-frequency member of the homophone 
pairs. Predictors were entered into the model in a blockwise fashion, in three separate 
blocks. The sole predictor in the first block was the average duration of the lower-
frequency member of a homophone pair. The second block contained known 
determinants of word duration in connected speech, such as contextual speaking rate, the 
probability of a word given neighboring words in an utterance, orthographic regularity, 
and proximity to pauses. On the third and final block, the frequency of the higher-
frequency member of the homophone pair (i.e. the frequency of the word whose duration 
was to be predicted by the model) was entered, to ascertain whether word frequency was 
a significant predictor of word duration over and above other known factors. That 
question has theoretical implications for linguistic and psycholinguistic models of 
language production, which are discussed in Gahl (2008).  

The modeling strategy of predicting the average duration of the higher frequency 
member of the homophone pair (e.g. time) from the lower frequency member (e.g. thyme) 
is problematic in a number of ways. For one thing, information specific to the lower 
frequency homophone never entered into the model predictions, except indirectly, via the 
duration of the lower-frequency homophone. For example, while the orthographic 
regularity of the high-frequency homophone was a predictor in the model, the 
orthographic regularity of the lower-frequency homophone was not. This meant that the 
homophone twin was not a perfect control for the effect of phonemic content on word 
duration, since the duration of, for example, thyme in part reflect the orthographic 
regularity of that word. Properties specific to the low-frequency words were never 
entered into the model.  

A further problem with the modeling strategy in Gahl (2008) was that information 
about specific word tokens was lost to the model. All of the predictors in the model 
represented information about word types, not word tokens. For some variables, this is as 
it should be. Word frequency, for example, is a property of a word type: The frequency of 
the word thyme is a property of the word type thyme, not of an individual token. By 
contrast, whether the word thyme immediately precedes a pause in an utterance, on the 
other hand, is a property of a specific token of the word. Information about proximity to 



pauses was entered into the model by determining the proportion of all tokens of thyme 

that immediately preceded a pause and using that proportion as a predictor in the model. 
Similarly, the measure of contextual speaking rate in the previous model was the average 
contextual speaking rate of all tokens representing a word type.  

The use of summary measures imposes a serious limitation on the model, in that the 
proportion of pre-pausal tokens may fail to capture crucial interactions between pausing 
and the other predictors. It is conceivable, for example, that the effect of orthographic 
regularity on word duration, which is subtle under the best of circumstances, becomes 
negligible before pauses or major disfluencies. If that is so, then model will 
underestimate the overall importance of orthographic regularity. This constitutes a 
serious limitation, especially since the goal of Gahl (2008)’s analysis was to establish 
whether frequency was a significant predictor of word duration over and above other 
known determinants of word duration: Since the effect of frequency on word durations is 
controversial, it is important to give all other predictors a chance to explain the observed 
durations, without reference to word frequency.   The same goes for other token-specific 
predictors, such as contextual speaking rate.   

The goal of the current study is to explore the various determinants of word duration 
further, using a regression model that avoids the problems just pointed out. The model is 
a mixed-effect regression model, with token durations of both members of each 
homophone pair as the outcome variable. This model is expected to have greater power 
for detecting the effect of the predictors on token duration.  

2. Data 

The data for the study come from the time-aligned transcript of the Switchboard corpus 
(Deshmukh, Ganapathiraju, Gleeson, Hamaker, & Picone, 1998), a collection of 240 
hours of recorded telephone conversations between strangers (Godfrey, Holliman, & 
McDaniel, 1992). Information about the word types, such as syntactic category and 
several other variables was extracted from the CELEX lexical database (Baayen, 
Piepenbrock, & van Rijn, 1993). In constructing the database for the current paper, I 
followed the procedure described in Gahl (2008)’s paper: First, all sets of words with 
identical phonetic transcription but different orthography were extracted from the 
CELEX database. Unlike the analysis in Gahl (2008), which took into account only pairs 
of homophones, the current analysis also took into account sets with more than two 
members, such as right/write/rite.  Several classes of homophone sets were then excluded 
from the database, following Gahl (2008): (1) Sets including function words and names 
of letters of the alphabet, such as b/be/bee; (2) Sets such as sauce/source, which are 
homophones based on the British English transcription used in CELEX, but not in 
American English; (3) Sets including orthographic forms representing more than one 
phonemic form. Thus, the pair read - red was not included, as read represents two 
different pronunciations; (4) Sets for which only one member was attested in 
Switchboard. On a final step, the duration of each token of all of the words on the 
resulting wordlist was then extracted from the Switchboard corpus. This procedure 
yielded a database of 79,867 tokens.  



 

3. Methods 

To facilitate comparison of the current model to that in Gahl (2008), I included all of the 
predictors that were in that previous model. In addition, the new model included the 
speaker’s age and sex. A description of all variables included in the models and of any 
transformations applied to the raw values can be found in Table 1. 

 

  

logDur The log-transformed, centered duration of the token, in 
milliseconds. Datapoints with log durations of less than -4, i.e. raw 
durations of 18 milliseconds, were removed from the dataset. 
There were only two such data points. 

   

Predictors relating to the context in which the token was found: 

lRate, rRate The local speaking rate in the region before (lRate) or after (rRate) 
the target token, based on the stretch of speech bounded by a pause 
or conversational turn and the target token; log-transformed and 
centered. 

lBigramProb, 

rBigramProb 

The bigram probability of the token given the preceding 
(lBigramProb) or following (rBigramProb) word. The data set used 
here excluded utterances in which the token had no immediate 
neighbor, i.e. was initial or final in an utterance. Both measures 
were log-transformed and centered. 

prePausal A binary variable indicating whether the target immediately 
preceded a pause of 500 ms or more. 

preDisfl A binary variable indicating whether the target immediately 
preceded a disfluency, i.e. a hesitation sound such as um or uh. 

age The age of the talker.  

sex The sex of the talker. 

Predictors relating to context-independent properties of the target words: 

len Length in letters. 

berndt Orthographic regularity, based on published grapheme-to-
phoneme probabilities (Berndt, Reggia, & Mitchum, 1987).  

nQuot The proportion of nouns in the target word’s frequency count in 
CELEX. For example, the form stake has a "noun quotient" 
(nQuot) of .935, reflecting the much higher frequency of stake as a 
noun than as a verb. As discussed in Gahl (2008) and references 
cited therein, syntactic category affects word durations, in part 



because nouns are more likely than verbs to occur at the end of a 
phrase and hence undergo phrase-final lengthening.  

logSwbdFq The word frequency in the Switchboard corpus, log-transformed 
and centered. 

 

Additionally, the model included the identity of the speaker (callerId) and of the 
pronunciation (pron, i.e. the form, which is the same for the two members of a 
homophone pair) as random-effects factors.  

Tables 1A and 1B show summary statistics for the continuous (Table 1A) and categorical 
(Table 1B) variables in the model.  

Variable Mean Median SD 

Token duration (ms) 312 290 13.6 

Speaking rate 
preceding the target 

3.1 syl/sec 3.6 syl/sec 1.00 

Speaking rate 
following the target 

2.9 syllables/second 3.1 syl/sec 0.69 

Bigram probability 
given the previous 
word 

0.04 0.008 0.10 

Bigram probability 
given the following 
word 

0.03 0.004 0.12 

Length in letters 4.36 4.00 0.97 

Orthographic 
regularity 

0.93 1.00 0.12 

Noun proportion 0.38 0.14 0.44 

Speaker age 37.2 years 34 years 11.0 

Frequency in 
Switchboard 

5754 4066 6124 

Table 1A: Summary statistics of homophone tokens in the Switchboard corpus: 
Continuous variables 



 

Categorical predictors:  

Immediately preceding a 
pause 

True: 6024  

False: 73843 

Immediately preceding a 
disfluency 

True: 17307 

False: 62560 

Speaker sex Female: 39122 

Male: 40745 

Table 1B: Summary statistics of homophone tokens in the Switchboard corpus: 
Categorical variables 

 

Figure 1 summarizes the correlational structure of the numerical predictors in a 
hierarchical clustering plot, using Spearman’s rho2 as a distance measure. Interestingly, 
frequency and local speaking rate clustered together, with the speaking rate in the region 
following the target clustering most closely with the frequency measure. Although the 
bivariate correlations are not very high, the clustering of local speaking rate and 
frequency confirms the importance of keeping speaking rate under statistical control in an 
investigation of frequency effects on word duration.  

 

Figure 1. Hierarchical clustering of predictors of word duration 



4. Results 

The main empirical question in Gahl (2008) was whether “lemma frequency”, e.g. the 
frequency of the word time vs. the word thyme, was a significant predictor of word 
duration, once other factors were controlled for. As argued above, the model developed in 
Gahl (2008) is vulnerable to a number of objections. The current study presents a model 
of word durations at the token level that addresses these objections. As in Gahl (2008), 
the current study reports models with and without frequency as a predictor and uses 
model comparison by means of sequential ANOVAs to decide whether the including 
frequency in the model led to a significant improvement. The current model uses token-
level information wherever possible, in contrast to the fixed-effects model of Gahl 
(2008), which predicted average durations based on information about word types, such 
as average local speaking rate. The outcome variable in the current model was the 
centered, log-transformed duration of each homophone token, for example all tokens of 
time and all tokens of thyme, that were found in the Switchboard corpus. Data preparation 
and statistical analysis was carried out using R (R Development Core Team, 2008), and 
in particular the Design (Harrell, 2008)and languageR (Baayen, 2008) packages.  

Table 2 shows the regression coefficients and summary information for the “baseline” 
model, i.e. a model including all factors except frequency.  

 

Variable beta SE t  

 Intercept     0.0442   0.0129911    3.40 

cLogLBigram    -0.0084185   0.0006519  -12.91 

cLogRBigram    -0.0215032   0.0006842  -31.43 

cLogLRate      -0.1279349   0.0225121   -5.68 

cLogRRate      -0.0353013   0.0248146   -1.42 

cLogBerndt     -0.1183335   0.0326874   -3.62 

cLogNQuot       0.1804308   0.0144830   12.46 

clen            0.0568600   0.0052771   10.77 

cAge            0.0016734   0.0004152    4.03 

sexMALE        -0.0793775   0.0090479   -8.77 

prePausalTRUE   0.4060329   0.0045876   88.51 

preDisflTRUE    0.4105785   0.0030670  133.87 

Table 2: Summary of the “baseline” model of word duration, i.e. a model without a 
frequency term. The model has random intercepts for speaker (s = 0.095) and phonemic 
content (i.e. a grouping variable that groups together all homophonous tokens, e.g. all 

tokens of thyme and time as one group; the standard deviation for that random effect was 
0.13); the standard deviation of the residual was 0.32. 

 



The pattern of significant effects was similar to what was found in Gahl (2008): Words 
tend to lengthen immediately preceding pauses or disfluencies. High contextual 
probability, high speaking rate in the stretch preceding the token, and high orthographic 
regularity predict shorter word durations. Male speakers tend to produce shorter word 
durations than female speakers. Greater length in letters, higher speaker age, and stronger 
noun-bias promote longer word durations.   

Is frequency a determinant of word durations, over and above the other predictors? Table 
3 shows the regression coefficients and summary information for a model identical to the 
baseline model, but with the addition of frequency as a predictor. Again, all factors 
showed an effect in the same direction as found in Gahl (2008): Pre-pausal position or 
occurrence right before a disfluency and high noun-quotient (which tends to increase the 
likelihood of a word's occurring in phrase-final position) are associated with longer word 
durations. High frequency, high contextual speaking rate in the stretch of speech 
preceding the token, and predictability, and orthographic regularity are all associated with 
shorter word durations. Speaking rate in the region following the target yielded a 
marginally significant p-value (p = .05).  

 

Variable beta SE t  

 Intercept    0.0122744 0.0138638  0.89 

cLogLBigram -0.0079965 0.0006628  -12.06 

cLogRBigram -0.0210636 0.0006950  -30.31 

cLogLRate -0.1512506 0.0230406  -6.56 

cLogRRate -0.0480938 0.0245853  -1.96 

cLogBerndt -0.1418903 0.0312169  -4.55 

cLogNQuot 0.1744043 0.0142783  12.21 

clen 0.0526141 0.0051433 10.23 

cAge 0.0016767 0.0004135 4.06 

sexMALE -0.0793267 0.0090104 -8.80 

prePausalTRUE  0.4062573 0.0046101 88.12 

preDisflTRUE  0.4108366 0.0030824 133.28 

cLogSwbdFq -0.0110719 0.0025900 -4.27 

  

Table 3: Summary of the mixed-effects model of word duration, including word 
frequency. The model has random intercepts for speaker (s = 0.095) and phonemic 

content (i.e. a grouping variable that groups together all homophonous tokens, e.g. all 
tokens of thyme and time as one group; the standard deviation for that random effect was 

0.13); the standard deviation of the residual was 0.32. 

 



The two models – with and without frequency as a predictor – were compared using a 
sequential ANOVA, evaluating whether adding frequency to the model significantly 
improved the model. The model comparison shows the addition of the frequency variable 
to be justified (χ2(1) = 15.95, p <.00001) 

Given the theoretical significance of the effect of frequency, and given the small expected 
size of that effect, the significance levels of the model coefficients was explored further 
using Markov chain Monte Carlo sampling. Table 4 shows the coefficients and associated 
statistics.  

 

 Estimate MCMCmean HPD95lower HPD95upper pMCMC Pr(>|t|) 

Intercept 0.0123 0.0076 -0.0189 0.0361 0.5994 0.3760 

cLogLBigram -0.0080 -0.0080 -0.0093 -0.0068 0.0001 0.0000 

cLogRBigram -0.0211 -0.0211 -0.0225 -0.0198 0.0001 0.0000 

cLogLRate -0.1513 -0.1482 -0.1927 -0.1033 0.0001 0.0000 

cLogRRate -0.0481 -0.0528 -0.1009 -0.0043 0.0322 0.0504 

cLogBerndt -0.1419 -0.1479 -0.2115 -0.0881 0.0001 0.0000 

cLogNQuot 0.1744 0.1750 0.1465 0.2023 0.0001 0.0000 

Clen 0.0526 0.0551 0.0448 0.0654 0.0001 0.0000 

cAge 0.0017 0.0017 0.0009 0.0025 0.0001 0.0001 

sexMALE -0.0793 -0.0794 -0.0960 -0.0620 0.0001 0.0000 

prePausalTRUE 0.4063 0.4063 0.3975 0.4155 0.0001 0.0000 

preDisflTRUE 0.4108 0.4109 0.4048 0.4169 0.0001 0.0000 

cLogSwbdFq -0.0111 -0.0116 -0.0167 -0.0067 0.0001 0.0000 

Table 4: Coefficients and associated statistics for the model including word frequency as 
a predictor of word duration. “MCMC mean” denotes the mean value of the coefficient 

across 500 Markov chain Monte Carlo samples of the posterior distribution of the 
parameters. “HDP lower” and “HPD upper” denote the lower and upper bounds of the 

Highest Posterior Density interval for 95% of the probability density. “pMCMC” denotes 
the associated probability value. p(t) denotes the probability based on the t-distribution 

with 79,855 degrees of freedom. 

 

5. Discussion: Model evaluation 

The robustness of the model including frequency was further explored by inspecting the 
residuals. The current model is a purely linear model, despite the fact that some of the 
predictors in the model are known to have quadratic and other non-linear effects on word 
duration. Exploring such non-linear relationships was left for future research.  



Figure 2 shows the residuals for the model including frequency as a predictor. The plot 
suggests that the model is not very good at fitting words that are either unusually long or 
unusually short: This is to be expected – the model is linear in the middle range of data – 
one reason why extrapolating beyond the range of the data is not advised. 

 

Figure 2. Model residuals for the model including frequency as a predictor of word 
duration 

To ascertain whether the extreme data points were distorting the model estimates, I 
excluded all words with durations greater than 500 milliseconds or shorter than 100 
milliseconds. The pattern of significances in the resulting models was unchanged 
compared to the original model, and the normality of the residuals was not improved 
much. I therefore report the model based on all data points here.  

Below are plots of the partial effects of the models with and without frequency as a 
predictor, created with Harald Baayen’s plotLMER.fnc (Baayen, 2008). The broken lines 



represent MCMC-based HPD intervals. The solid line shows predicted values. The 95% 
HPD shows what to expect for the model predictions, including how “linear” the 
relationships are predicted to be. The predicted relationships appear to be fairly robustly 
linear relationships, with the exception of the effect of orthographic regularity 
(“cLogBerndt”), and possibly also the speaking rate in the region following the target 
(“cLogRRate”).   

 

 

Figure 3. Partial effect plots of numerical predictors in the model of word duration 

 

The model presented so far takes into account the same predictors and assumptions as the 
model in Gahl (2008), since one of the goals of the current study is to check whether the 
averaging procedure in Gahl (2008) produced a spurious result. The resulting model 



replicates the findings in Gahl (2008) and suggests that the conclusion in that study still 
stands.  

I next consider ways in which the model could be improved, first by excluding very short 
and very long tokens; then by taking into account the non-linear relationship between 
local bigram probabilities and word duration.  

The model considered so far doesn’t work very well for long token durations. One 
possible reason for this might be the fact that long tokens occur before disfluencies and/or 
pauses, and that those effects drown out all other effects for tokens before disfluencies or 
pauses. The mean duration of tokens preceding disfluencies was 415 milliseconds (vs. 
284 for tokens not preceding disfluencies). Similarly, the mean duration of tokens 
immediately preceding a pause was 408 milliseconds, compared to 304 milliseconds for 
tokens that did not precede pauses. Moreover, the presence of pauses and disfluencies 
may well affect the predictive power of some of the other predictors in the model, such as 
bigram probabilities and local speaking rate. I therefore fit a separate model to the subset 
of the data that excluded tokens before disfluencies and pauses (n = 56536 out of the 
whole set of 79867). The pattern of fixed effects is unchanged, with the exception of the 
effects of speaking rate in the region following the target, which is now highly 
significant. Removing disfluencies and pauses is conceptually well-motivated and results 
in the removal of many data points near the top of the word duration scale; therefore 
removing such datapoints might be expected to improve model fit in the extreme data 
ranges. Table 5 summarizes that model. 

Variable beta SE t  

Intercept 0.0031404 0.0154416 0.20 

cLogLBigram -0.0072150 0.0007872 -9.17 

cLogRBigram -0.0291421 0.0008164 -35.70 

cLogLRate -0.1264128 0.0256116 -4.94 

cLogRRate -0.1246426 0.0282804 -4.41 

cLogBerndt -0.1285027 0.0359311 -3.58 

cLogNQuot 0.2049346 0.0162473 12.61 

clen 0.0571749 0.0058635 9.75 

cAge 0.0023477 0.0004133 5.68 

sexMALE -0.0538263 0.0090052 -5.98 

cLogSwbdFq -0.0105186 0.0029475 -3.57 

Table 5: Summary of the mixed-effects model of word duration when tokens 
immediately preceding disfluencies or pauses were excluded. Like the previous models, 

the model has random intercepts for speaker (s = 0.091) and phonemic content (i.e. a 
grouping variable that groups together all homophonous tokens, e.g. all tokens of thyme 

and time as one group; the standard deviation for that random effect was 0.13); the 
standard deviation of the residual was 0.32. 



Disappointingly, the distribution of residuals does not improve. Figure 4 shows the 
residuals of a model without disfluent or pre-pausal tokens, side-by-side with the 
residuals when all tokens are included. 

 

Figure 4. Model residuals for the full data set (left panel) and the subset of the data set 
excluding tokens immediately preceding pauses or disfluencies (right panel) 

 

What about the shortest word durations, which the model also predicts poorly? Very short 
word durations likely represent tokens that pose special problems for the time-alignment, 
which may add unacceptable levels of noise to the short duration values. Notice that the 
raw word durations include durations barely long enough for a single segment. I therefore 
re-fitted the models, this time excluding tokens with durations below 120 milliseconds.  
Table 6 gives the descriptive statistics for the subset of the data with word durations 
above 120 ms. 



 

 Mean SD 

Outcome variable: 

    token duration 

318 ms  

Continuous predictor 
variables: 

  

Speaking rate, preceding 3.1 syllables/second  

Speaking rate, following 3.11 syllables/second  

Bigram probability, given 
prev. 

0.04  

Bigram probability, given foll. 0.03  

Length in letters 4.39  

Orthographic regularity 
(“berndt”) 

0.93  

Noun proportion 0.38  

Speaker age 37.2 years  

Frequency in Switchboard 5754  

 

Categorical predictors: 

 

Immediately preceding a 
pause 

True: 6024  

False: 73843 

Immediately preceding a 
disfluency 

True: 17265 

False: 60608 

Speaker sex Female: 38336 

Male: 39537 

Table 6: Descriptive statistics for the dataset excluding word durations below 121 ms.  

 



Table 7 summarizes the model when tokens below 121 milliseconds were excluded. The 
number of observations meeting that criterion was 54590. All predictors in the model are 
still significant, in the expected direction.  

 

Variable beta SE t  

Intercept 0.0134904 0.0149837 0.900 

cLogLBigram -0.0034344 0.0007527 -4.563 

cLogLRate -0.1189210 0.0244233 -4.869 

cLogRRate -0.0747063 0.0269802 -2.769 

cLogBerndt -0.1214651 0.0347610 -3.494 

cLogNQuot 0.1951226 0.0154983 12.590 

clen 0.0504931 0.0056772 8.894 

cAge 0.0020900 0.0003759 5.561 

sexMALE -0.0503839 0.0081858 -6.155 

cLogSwbdFq -0.0253404 0.0027947 -9.067 

  

Table 7: Summary of the mixed-effects model of word duration, including word 
frequency. Tokens with durations below 121 milliseconds, as well as tokens immediately 

preceding pauses or disfluencies were excluded.  The model has random intercepts for 
speaker (s = 0.08) and phonemic content (i.e. a grouping variable that groups together all 

homophonous tokens, e.g. all tokens of thyme and time as one group; the standard 
deviation for that random effect was 0.13); the standard deviation of the residual was 

0.30. 

 

Figure 5 shows the residuals for that model, side by side with the residuals when all 
tokens are included. The residuals are definitely much improved in the lower quartiles. 
For the higher quartiles, normality of the residuals does not improve. This may be due to 
one or more of the predictors having a non-linear relationship to word durations, or it 
may be due to the distribution of the outcome itself.  

 



 

Figure 5: QQ-plots of the residuals of frequency-based models of all data points (left 
panel) and the subset of the data excluding token durations below 120 milliseconds and 

tokens immediately preceding pauses or disfluencies.   

 

How successful are the models at explaining variability in word durations? And is the 
model’s success at capturing variability just due to the random adjustments, or does 
adding the fixed effects improve the model’s ability to capture variability? This second 
question merits special attention: One way to evaluate models is to ask what the relative 
contribution of random and fixed effects is: If model fit is achieved primarily via random 
adjustments, then this may cast doubt on the importance of the fixed effects. On the other 
hand, one of the random effects in the current model is based on “pronunciation”, i.e. 
phonemic content. One would expect phonemic content to be an excellent predictor of 
word durations, even absent any information about the fixed effects. Therefore, the 
question isn’t so much how much variability in the data can be captured by the fixed 



effects that cannot be captured via random adjustments (“Can the random effects do it 
all?”); the question is, rather, how much the variance of the random adjustments changes 
depending on whether the fixed effects are in the model (“Can the fixed effects keep the 
random effects from doing all the work?”).  

 

 All tokens 

Variance 
accounted for:  

 

homoBaseline 

By fixed and 
random effects 

0.47     (baseline) 

0.46 (including frequency) 

By callerId 
only 

0.07 

By random 
effects only 

0.30 

…plus fixed 
effects for 
pauses and 
disfl 

0.46 

Table 8: Amount of variability in word duration captured by models with and without 
fixed effects.  

Table 8 shows the amount of variability explained by models with and without fixed 
effects. that the full model accounts for 46% of the variance in word durations. A good 
part of that variance is accounted for just by the random effects: 30/47 = 66.0%. Adding 
the fixed effects for pauses and disfluencies means that 46 % of the variance is accounted 
for, leaving practically nothing1 (0.0044) to explain for the linguistically more interesting 
variables. Clearly, the importance of the fixed effects does not lie in improving the 
overall model fit.   

The question is: How much do the random adjustments change when fixed effects are 
added? Table 9 shows the random adjustments in a model without fixed effects (durations 
above 120 milliseconds, excluding pauses and disfluencies), compared to the adjustments 
in the full model. The variances for callerId and for pronunciation are indeed smaller for 
the model that includes fixed effects: The variance for the adjustment by Speaker 
(“callerId”) goes down by 17% ((0.008028 - 0.0066523) / 0.00828). The variance for the 
adjustment by Pronunciation goes down by 53% ((0.0184661 – 0.039007) / 0.039007). In 
answer to our question, then: These numbers suggest that the fixed effects are capable of 
keeping the random adjustments from doing all the work.  

 

                                                
1 > cor(fitted(homo.lmer), d$cLogDur)^2 - cor(fitted(homoFixedPauseDisfl.lmer), d$cLogDur)^2 
[1] 0.00441292 



Without fixed effects: With fixed effects: 

Random effects: 

 Groups Name        Variance     Std.Dev. 

 callerId (Intercept) 0.008028 0.089599 

 pron (Intercept)      0.039007 0.197503 

 Residual                 0.092682 0.304437 

 

Random effects: 

 Groups Name        Variance Std.Dev. 

 callerId (Intercept) 0.0066523 0.081562 

 pron (Intercept)      0.0184661 0.135890 

 Residual                 0.0905292 0.300881 

 

Table 9: Variance and standard deviations of random effects in models with and without 
fixed effects 

 

The models discussed so far all assume linear relationships between predictors and 
outcome. The partial regression plots suggest that that assumption is reasonable; yet, 
previous studies of word durations have noted non-linear relationships between bigram 
probability and word duration (Bell, Brenier, Gregory, Girand, & Jurafsky, 2009). I 
therefore fitted a model taking into account a quadratic effect of bigram probabilities. 
Table 10 summarizes the model.  

Variable beta SE t  

Intercept 0.0328851 0.0154164 2.13 

cLogLBigram -0.0078023 0.0006626 -11.78 

cLogLBigram2 -0.0006452 0.0002149 -3.00 

cLogRBigram -0.0210377 0.0006964 -30.21 

cLogRBigram2 -0.0006479 0.0002156 -3.01 

cLogLRate -0.1072044 0.0231190 -4.64 

cLogRRate -0.1404621 0.0242616 -5.79 

cLogBerndt -0.1253817 0.0337309 -3.72 

clen 0.0460915 0.0054989 8.38 

cAge 0.0016649 0.0004150 4.01 

sexMALE -0.0790579 0.0090449 -8.74 

prePausalTRUE 0.4074274 0.0045930 88.71 

preDisflTRUE 0.4120113 0.0030761 133.94 

cLogSwbdFq -0.0165871 0.0027480 -6.04 

Table 10: Summary of the mixed-effects model of word duration including a quadratic 
term for local bigram measures. Like the previous models, the model has random 

intercepts for speaker (s = 0.095) and phonemic content (s = 0.14); the standard deviation 



of the residual was 0.32. Total variance accounted for by random and fixed effects was 
.46.  

 

Including the quadratic terms results in a slight improvement, inasmuch as the effect of 
local speaking rate emerges as significant, as one would expect it to be. All other 
coefficients are significant, in the expected direction: Higher bigram probabilities, faster 
speaking rate, greater orthographic regularity, and higher word frequency are associated 
with shorter word duration. Male speakers tended to produce shorter word durations, 
other things beign equal. Greater length in letters, higher speaker age, and neighboring 
pauses and disfluencies are associated with longer word durations.  

 

  

  

  



  

  

 

 

Figure 6: Partial residuals for the model including quadratic terms for bigram 
probability, given the target token’s immediate left and right neighbors. Values on the y-

axis represent predicted  

The current model does not include a quadratic term for the effect of speaking rate on 
word durations, even though previous studies have reported quadratic relationships 
between speaking rate and word duration (Jaeger, p.c.), and between speaking rate and 
error rates in automatic speech recognition systems (Goldwater, Jurafsky, & Manning, 
2008). I tested this, but found speaking rate preceding the target, as well as the quadratic 
term for the speaking rate in the region following the target to be non-significant in the 
resulting model. Including the quadratic terms for speaking rate also did not result in 
improved residuals or amount of variance accounted for. The impression I get is that the 
“quadratic” effect really just separates the tokens with the lowest speaking rates (which 
tend to be the ones near disfluencies) from all other tokens – so looking at the fluent 
tokens separately, or having disfluencies in the model renders the quadratic terms for 
speaking rate superfluous. 

Conclusion 

The purpose of the current study was to ascertain whether the effect of lemma frequency 
on word durations reported in Gahl (2008) would hold up to scrutiny. It did.  
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