How To Study a Tone Language,
with exemplification from Oku (Grassfields Bantu, Cameroon)

Larry M. Hyman
University of California, Berkeley

DRAFT • August 2010 • Comments Welcome

1. Introduction
On numerous occasions I have been asked, “How does one study a tone language?” Or: “How can I tell if my language is tonal?” Even seasoned field researchers, upon confronting their first tone system, have asked me: “How do I figure out the number of tones I have?” When it comes to tone, colleagues and students alike often forget everything they’ve learned about discovering the phonology of a language and assume that tone is somehow different, that it requires different techniques or expertise. Some of this may derive from an incomplete understanding of what it means to be a tone system. Prior knowledge of possible tonal inventories, tone rules, and tone-grammar interfaces would definitely be helpful to a field researcher who has to decipher a tone system. However, despite such recurrent encounters, general works on tone seem not to answer these questions—specifically, they rarely tell you how to start and how to discover. I sometimes respond to the last question, “How do I figure out the number of tones I have?”, by asking in return, “Well, how would you figure out the number of vowels you have?” Hopefully the answer would be something like: “I would get a word list, starting with nouns, listen carefully, transcribe as much detail as I can, and then organize the materials to see if I have been consistent.” (I will put off until §5 commentary concerning the use of speech software as an aid in linguistic discovery.) Although I don’t think the elicitation techniques that one applies in studying segmental vs. tonal phonology are really very different, what is needed is a general discussion and illustration of how tonologists go about their work from beginning to end. My goal here is to share my personal experience with tonal elicitation in hopes that it will be useful to field researchers and students who are lucky enough to face an unknown tone system. I will not claim that every tonologist adopts the same strategies as I do, some of which I learned directly or indirectly from my teacher, Wm. E. Welmers, but I believe that most Africanists do.

Logically, there are three separate tasks that one must take up in studying a tone system from scratch. Since these are necessarily ordered, with each one feeding into the next, I will refer to the three tasks as stages:

(i) In Stage I the goal is to determine the surface tonal contrasts. This is first done by considering words in isolation.

(ii) In Stage II the goal is to discover any tonal alternations (“morphotonemics”) which may exist in the language. This can be done either by putting words together to make short phrases or by eliciting paradigms.

(iii) Stage III comprises the tonal analysis itself, the interpretation of what has been discovered in Stages I and II. At this point one typically draws on theoretical constructs and formal devices, e.g. autosegmental notation, to help express one’s insights as to how the tone system works.
Most works on tone are concerned with Stage III, which necessarily presupposes the first two: One cannot possibly analyze a tone system without understanding the surface contrasts and any occurring tonal alternations. Stage II is of course only relevant if the language has tonal alternations either word-internally or at the phrase level. While my impression is that most tone systems do have at least some morphotonemics, there are some languages like Tangkhul Naga, where a H(igh), M(id), or L(ow) tone mostly just sits on its syllable and neither changes nor has any effect on other tones.

The above division into stages is of course highly simplified but is extremely important to distinguish. Pike (1948), for example, likes to emphasize discovering the (underlying) tonal properties of morphemes by establishing a “frame”, i.e. an utterance context in which all of the contrasts are overtly realized. For nouns this frame might be the word in isolation, or it might be as direct object following a L tone negative verb. But how does one discover such a frame? The answer is by going through stages I and II. Crucially, one should not pre-judge what the frame might be, as it varies from language to language. A special warning to phoneticians: “Say X again” is not guaranteed to be a neutral context either for the phonology or the phonetics.

In the following sections I will discuss and provide illustrations for each of the three stages. For this purpose I have chosen to focus on Oku, a Grassfields Bantu language of the Ring subgroup on which I was able to do fieldwork in Cameroon in 1977, although other languages will be mentioned, particularly in the appendix. In §2-4 I describe each of the three stages mentioned, followed by additional considerations in §5. The appendix consists of some brief mention of differences that can obtain between citation forms and forms in context.

2. **Stage I: Establishing the surface contrasts**

In this section we discuss how to start. As mentioned in §1, the logical starting point is to get a list of words, just as one would do with a language not suspect of having tone. Since nouns are easiest to elicit in isolation, often without morphological complexities, this is how most researchers I know begin. (I have heard of field methods courses which begin by asking the speaker to count from one to ten. Since this is not practical in the Amazon, where numerical systems are more limited, and since numbers may get complex rather quickly, I recommend staying with nouns.) A basic word list, e.g. the Swadish 100 or something tailored to the specific linguistic area, can be used. As in any field situation, in the early stages one exploits phonetic, e.g. IPA, notation to mark very fine detail, gradually working out the surface contrasts and a practical orthography.

So far so good, but two questions immediately arise: First, how does one transcribe pitch? Second, what does one transcribe pitch on—vowels? syllables? In approaching a completely unknown language, one does not know in advance which pitches will be analyzed as which tones, or even if the pitches correspond to tones or are realizations of stress or intonation. As Mark Donohue warns his students, “One doesn’t hear tones, one hears pitches.” Therefore, what is needed is a neutral system for marking relative pitch—but on what? Although we have the convenient term **tone-bearing unit** (TBU), establishing whether the TBU is the mora, the

1 Subsequent unpublished work on Oku includes Blood & Davis (1999), Davis (1992, 1997), Mbibeh (1996), and Nforbi (1993). In this work I have generally left my transcriptions as originally taken down, pre-phonemically, as my interest was tone. Perhaps in a revised version of the paper I will phonemicize the vowels, e.g. the predictable variation between [ɛ] and schwa on grammatical morphemes.
syllable, or some subset of sonorant segments is a matter of analysis, not transcription. Since these early transcriptions will be subject to considerable reconsideration, one might initially adopt a strategy of marking a pitch on every vowel, and possibly, on every syllabic sonorant consonant. Although the IPA has made some suggestions, there is no universally accepted phonetic transcription for pitch. We do not know in advance how many contrastive pitch heights there will be, but we do know that the upper limit is five. What is needed, therefore, is a continuous scale on which up to five tone heights and their combinations as tonal contours can be identified. A first possibility, following Chao (1930), is to use integers, e.g. 1-5, where a^5 = the highest pitch and a^1 = the lowest pitch, as in the following examples:

(1)

a. Five levels: Kam (Shidong) [China] (Edmondson and Gregerson 1992)

<table>
<thead>
<tr>
<th>Pitch</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^1</td>
<td>‘thorn’</td>
</tr>
<tr>
<td>a^2</td>
<td>‘eggplant’</td>
</tr>
<tr>
<td>a^3</td>
<td>‘father’</td>
</tr>
<tr>
<td>a^4</td>
<td>‘step over’</td>
</tr>
<tr>
<td>a^5</td>
<td>‘cut down’</td>
</tr>
</tbody>
</table>

b. Four level + five contour tones in Itunyoso Trique [Mexico] (Dicanio 2008)

<table>
<thead>
<tr>
<th>Level</th>
<th>Falling</th>
<th>Rising</th>
</tr>
</thead>
<tbody>
<tr>
<td>b^4</td>
<td>‘hair’</td>
<td></td>
</tr>
<tr>
<td>y^5</td>
<td>‘small’</td>
<td></td>
</tr>
<tr>
<td>y^4</td>
<td>‘wax’</td>
<td></td>
</tr>
<tr>
<td>n^3</td>
<td>‘plough (n.)’</td>
<td></td>
</tr>
<tr>
<td>y^2</td>
<td>‘water’</td>
<td></td>
</tr>
<tr>
<td>n^1</td>
<td>‘to tell lie’</td>
<td></td>
</tr>
<tr>
<td>n^1</td>
<td>‘meat’</td>
<td></td>
</tr>
</tbody>
</table>

Chao’s system, and the practice still used to describe tones in Chinese dialects, is to always use at least two integers, the first indicating the starting point, the second (or last) indicating the end point. Although rarely applied to languages outside East and Southeast Asia, this system would annotate the Trique level tone words in (1b) as $b^4 n^3 e^2 n^1$, and $n^1 n^2$. If the tone is more complex (falling-rising or rising-falling), three integers would be used, e.g. $m^2 a^4 14$, $m^3 a^5 33$.

The IPA has proposed the equivalent system in (2a) where the five pitch levels are indicated along a vertical bar:

(2)

a. $t[\hat{\cdot}]$ $t[\hat{\cdot}]$ $t[\hat{\cdot}]$ $t[\hat{\cdot}]$ $t[\hat{\cdot}]$

b. $t[\hat{\cdot}]$ $t[\hat{\cdot}]$ $t[\hat{\cdot}]$ $t[\hat{\cdot}]$ $t[\hat{\cdot}]$

I sometimes use the equally iconic system in (2b), which allows also for indications such as $[\hat{\cdot}]$ for a falling tone and $[\hat{\cdot}]$ for a rising tone. One also could use arrows (\downarrow \uparrow \nearrow \swarrow) or any other system which allows the transcriber to know exactly what s/he meant. Thus, to summarize, we have any or all of the options in (3).

(3)

a. Integers, e.g. 1-5, where 5 = the highest pitch and 1 = the lowest pitch

b. Drawings, e.g. $[\hat{\cdot}]$ = high pitch, $[\hat{\cdot}]$ = low pitch, $[\hat{\cdot}]$ = falling pitch, $[\hat{\cdot}]$ = rising pitch

c. Arrows, e.g. $[\cdot]$ ‘go up’, $[\cdot]$ ‘go down’

Although I will ultimately use the standard accent notation in (4) throughout this work, one need not begin with these, as they represent an analysis, not a phonetic transcription:
If there is a need to transcribe a rising-falling (LHL) or falling-rising (HLH) contour, the above accents can be combined as (´`) and (ˆ´), respectively. The same downstep (´) and upstep (´) arrows can also be used to indicate that a specific tone has been slightly lowered or raised.

2.1. Oku noun citation forms

So, let’s begin. Here are the first five nouns that I elicited in Oku, as I transcribed them in Bamenda, Cameroon, in 1977:

(5) a. ‘animal’ nám HL pl. námsé
b. ‘ant (sp.)’ fémbá M-H pl. níbúa
c. ‘arm’ èbkáí M-HL pl. tákáí
d. ‘ashes’ kánsál M-HL pl. èbásl
e. ‘axe’ njám˚ L˚ pl. njámsó

Some comments on (5), column by column:

(i) As can be seen, I began with a list of nouns, organized alphabetically. (I used this same list for all of the languages of the Ring subgroup of Grassfields Bantu which I investigated.) The first problem I encountered with the list was that Oku did not have a generic word for ‘ant’. The form in (5b) describes a type found in trees which stings.

(ii) As seen, I transcribed three tone heights, H, M, and L. In addition, the H and L combined to form a HL contour tone. In (5a) and (5d) I wrote this with (´) written over the one short vowel. Since I had written a vowel sequence in (5c), I wrote it as a large (^) covering both vowels (but have reproduced it here as a `+ ` sequence). (5e) seemed monosyllabic to me, so I did not write a tone over the initial nasal. I did however encode that the stem tone seemed a rather low tone, but one whose pitch was level, not falling (as low tones frequently are, especially before pause). I transcribed the level L tone with (˚), which I have referred to as an “unreleased L tone”, one which does not exhibit the typical “downgliding” before pause. (The IPA symbol [ı] in (5d) stands for a bilabial trill, which I transcribed as [∫] with a dot under it.)

(iii) While not all languages have a plural, or an interesting plural that varies with the noun, I have long been accustomed to eliciting both since this not only makes a nice sg./pl. record for each entry, but is also sometimes helpful for other reasons, e.g. to figure out the segments or tones by comparing the singular and plural. (It also makes the phonetic transcription less tedious in the sense that one can peek ahead to what’s coming up in the morphology.) In the above examples, we see that (5a) and (5e) add a suffix -s to form a plural, with some tonal interest: In (5a) the noun root is H and the suffix is M; in (5e) the root is L and the suffix is H. On the other hand, (5b-d) form their plurals with a different prefix and no change in tone. One last observation: I wrote [níbúa] for the plural in (5b), by which I meant a M-H sequence. Here I arbitrarily decided that it wasn’t necessary to repeat the acute accent on the second vowel of the root, i.e. [níbúá]. This is fine as long as one knows how to interpret the lack of an accent on a vowel or other tone-bearing unit.
The transcriptions in (5) are, of course, only a first attempt, and we do not know if the
categorical interpretations will hold up against further data. For example, although the HL falling
tones appeared to fall to a lower pitch than the level L° tone of [njàm˚] ‘axe’, we don’t know if
the different end points are due to the difference between a falling tone and a L tone, or whether
we will have to distinguish between level and falling L tones. In other words, is ‘axe’ just a L
tone, or is it a special kind of L tone?

Here are the next five nouns which I elicited:

(6) a. ‘back’ jìm˚ ~ jím L° ~ H pl. jînšô
b. ‘bag’ kēbâm M-HL pl. ēbbûām
c. ‘bamboo’ ēblēŋ M-H pl. îlēŋ ~ tîlēŋ
d. ‘basket’ kà L pl. kâsè˚
e. ‘bean’ kôn M-H pl. ēkôn ~ tôkôn

If we look first just at the singulars, we (6b) has the same M-HL and (6c,e) the same M-H
sequences observed in (5). The noun ‘back’ has two variants, L° and H, while the other
monosyllabic noun, [kà] ‘basket’, presents the only new tone, a falling L pitch, which I
transcribed with the grave accent. At this point it would be natural to ask the speaker to
pronounce the three monosyllabic nouns in sequence so as to compare their pitches and see if
there really is a difference. (Since ‘back’ has a H alternate, one could just compare [njàm˚] ‘axe’
and [kà].) When asking a speaker to say one word first, and then the next, it is important to make
sure that s/he does not add any intonational “list” or other intonation, as one might do with a
rising tone if comparing one word with another in English: “axe... basket”. That is, one has to get
the speaker used to the idea of saying the words in sequence as if each one were an utterance in
itself.

By so doing, we determine that there is a phonetic difference between [njàm˚] and [kà].
However, there also is a segmental or syllable-structure difference: Are they really two different
contrastive “tones”, or are they both just L tones which are realized in a predictably different
way: level L° on a CVC syllable vs. falling (or downgliding) L on a CV syllable. If we look at
the plurals (which mostly show a number of different prefix changes), we observe that the plural
of ‘basket’ is [kâsè˚], i.e. with ending with a level L°. Remember that our first goal is to establish
the surface tonal contrasts. We still have two hypotheses to pursue in establishing whether the
two types of L tone are contrastive:

(i) There is one L tone which is pronounced as falling on a CV word, but level on a CVC or
CVCV word.

(ii) There are two different L tones, L and L°, which are contrastive, i.e. which can
potentially occur on the same kinds of syllables and words.

Of course one of two things could quickly resolve the issue in either direction. First, the
speaker be asked if it’s OK to pronoun kà as kà° or njàm° as njàm. If s/he finds them both
successful, or if s/he responds by asking, “What’s the difference?” we can hypothesize that L°
and L are free variants of the same tone. On the other hand, if one the speaker volunteers that kà°
and njàm mean something different frm kà and njàm°, we would need to conclude that L° and L
are not equivalent (“allotones”). Linguists have long been trained to look for such minimal pairs.
However, minimal pairs are a luxury. In the descriptions of tone systems one often reads
statements to the effect that tone is contrastive, but that “there are few minimal tone pairs.” In
other systems tonal pairs, triplets and even quintuplets can be produced as in Kam (Shidong) in (1a).

It will take some time to resolve the question (see below). In the meantime, here are the next ten nouns which were elicited:

(7) a. ‘bed’ ēbkón M-H pl. mǐkón
b. ‘bee’ yúo(lé) H(-H) pl. yúo(lé)sé
c. ‘beehive’ mǐnywák M-H pl. těnywák
d. ‘behind’ Ŭbám M-H pl. ---
e. ‘belly’ ēblé M-HL pl. mǐlē
f. ‘belt’ kěkóí M-HL pl. ēbkóí
g. ‘bird’ fǎnúŋ M-H pl. mǐnún
h. ‘blood’ mǐdúŋ M-H pl. ---
i. ‘body’ ēβwún M-H pl. tōwún
j. ‘bone’ kěvóf M-H pl. ēvóf

At this point we haven’t obtained any new tone patterns. Except for ‘bee’ in (7b), which has a H tone (or H-H if the optional [lé] is also pronounced), all of the bisyllabic nouns have either M-H or M-HL tone. On the other hand, the monosyllabic nouns, which are fewer, have either H, HL, L or L˚ tone (the contrastiveness between the last two not yet fully established). Even though we have only twenty nouns (and 18 plurals), there seems to be some repetitiveness, which is good, since we can now can test to see if we have been consistent.

To do a consistency test we arrange the data to check that we have always written the same thing the same way and different things in different ways. The above data, for example, raise a number of segmental questions. Concerning differences, we have for example written the root vowel of the nouns in (7g) vs. (7i) differently: [fànnún] vs. [ēβwún]. Is there really a difference between [u] and [u] in a CVn syllable? Similarly, we have transcribed CV prefixes sometimes with [e] sometimes with schwa, [ke] vs. [kə], [fe] vs. [fə], [te] vs. [tə], and similarly concerning the plural suffix [se] vs. [sə]. A further question is whether we have heard right in transcribing the differences between [ēβ] in (7a), [ēβ] in (7e), [ēβ] in (7i) and [ēv] in the plural of (7). If so, can we freely substitute one for the other? These are common questions that one asks in doing phonological analysis, and so we must do likewise for the tone.

While the above questions address the issue of whether we have overdifferentiated, i.e. whether we have transcribed differences that are not contrastive, the reverse question is whether we have written different sounds the same way: It is rather striking that we have M tone prefixes, but no M tones on roots other than the HM in the plural form [jǐmsò] ‘backs’ in (6a). Maybe some of the M prefixes are really H, or some of the HL falling tones are really ML. To best way to check this is the arrange all of the like-toned words in a list and have the speaker read them one after one, as in (8), where I placed only plurals whose tones are different from their singular:

(8) M-H M-HL H-H L-H H HL L˚ L
fēmbá ēbkóí yúosé njamsó jǐm nām njām˚ kà
ēbléŋ kābšl yūo ēβwún jǐmsè˚
iŋkón kēbām H-M L-L˚
ēbkón ēblé njamsè kāsè˚
mǐnywák kěkóí

184
The procedure is to have the speaker pronounce each pattern separately. If something is transcribed wrong from the others, it can, in fact should, jump out to the listener. Although I have not included any such “mistakes”, let me just say that they are not infrequent, particularly if a three-height tone system where it is often hard to tell the difference between L-H, L-M and M-H sequences, all of which involve a lower tone followed by a higher one.

Let us assume that we have checked all of the patterns and that there are no corrections to be made. As seen in (8), the tone patterns are largely skewed towards M-H and M-HL. Assuming that this would hold up with further elicitation of nouns, we don’t know if this is because there are noun-specific tone patterns, or because these patterns are more typical of what would be found in verb and other forms. All we can do at this point is consider the distributional properties of tones on syllables and words in isolation. On single syllables we have lots of examples of H, M, and HL tones, fewer HM, L, and L˚ tones and no cases of MH, ML, LH or LM. Monosyllabic words can be H, HL, L˚ or L, while bisyllabic words thus far can be M-H, M-HL, H-H, H-M, HM-H, L-H and L-L˚. Let’s add another 20 nouns and their plurals to the database:

(9)	a. ‘bow’	ìnûn	M-HL	pl. tênûn
	b. ‘branch’	ěbtâm	M-HL	pl. itâm ~ têtâm
	c. ‘breast’	ñyîn	M-HL	pl. ñyîn
	d. ‘bridge’	ñblàà	M-HL	pl. ñlàà ~ tôlàà
	e. ‘bundle’	ñtò’k	ML	pl. ñtôksè’
	f. ‘buttock’	ñsås	M-HL	pl. tòsås
	g. ‘cadaver’	kàŋkwùò	L-ML	pl. ñmkwùò
	h. ‘calabash’	fôtèm	M-HL	pl. rîtèm
	i. ‘calabash’	ñgiè	L	pl. ñgìesè’
	j. ‘canerat’	ñjì’wil	ML-L	pl. ñjì’wìlsè’
	k. ‘caterpillar (sp.)’	sóì	H	pl. sóisè
	l. ‘cave’	mònèk	L	pl. mòksè’
	m. ‘ceiling’	ìyùò	M-H	pl. tònùó
	n. ‘charcoal’	kèisè	H-H	pl. ---
	o. ‘cheek’	bòbòk	H-H	pl. bòbòksè
	p. ‘chest’	kàŋkàŋjèlè	L-L-L-L	pl. rìkàŋjèlè
	q. ‘chief’	ñfèfèn	M-HL	pl. tòfèn
	r. ‘chief’s palace’	nìs’k	ML	pl. nìksè’
	s. ‘child’	wàñ	M	pl. ñyòn
	t. ‘clay, mud’	kècàk	M-H	pl. ñèbcàk

A number of new elements appear in (9). First, there are monosyllabic nouns of the shape M (9s) and ML (9e,r), the latter appearing for the first time. Second, ML occurs not only in monosyllables but bisyllables of the shape L-ML (9g) and ML-L (9j). Third, while we had had a potential trisyllabic noun in the plural of (7b), there now two more trisyllabic plurals (9j,o) and
one noun which is quadrisyllabic in both the singular and plural (9p). Finally, more examples of the L and H monosyllabic patterns are found.

With the expanding number of tone patterns, the main question to ask is whether all logical combinations of tones occur in Oku. To make sure that nothing is overlooked, I like to make tables such as in (10) where I plot the tones of bisyllabic forms to see how many of each combination is found in the (thus far admittedly small) corpus. This not only reveals what is attested vs. unattested, but also points to patterns which are so slightly attested that they may even be considered exceptional (perhaps limited to a specific construction or to borrowings). The first tone is indicated in the first column, the second tone on the top row:

(10)

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>HM</th>
<th>HL</th>
<th>M</th>
<th>ML</th>
<th>L°</th>
<th>L</th>
<th>Monosyllabic</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HM</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HL</td>
<td>12</td>
<td></td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>M</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ML</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

While all seven tones are realized on monosyllabic nouns except HM, bisyllabic nouns are significantly restricted: Of the 33 entries, 27 of them are H-H, M-H or M-HL. In addition to the poorly attested patterns with one example each, a number of logical combinations are not attested, e.g. H-HM, HL-H, M-L. The question is whether the above distributions and non-attestations are systematic, for example, why do so few bisyllabic nouns end L (or L°)? For this we would need to collect more nouns and expand to other parts of speech. Let us see what verbs look like in their citation form.

As was indicated, we started with nouns because they are typically easier to elicit in isolation than other parts of speech. Since nouns can appear as full utterances in many languages, it is quite natural to ask the speaker, “How do you say ‘animal’?” This will be especially true in languages which do not require an article or other determiner to appear with a noun. However, there are exceptions. Some languages require that one choose a form of the noun which is inflected for case or utterance function (e.g. focused), which can be tonal. It will be only later that one discovers that the noun list really consists of items such as ‘it’s an animal’, or that the nouns are cited as they would appear in direct object position.

2.2. Oku verb citation forms

Verbs often present more complexity than nouns in general and with respect to tone. Some languages do not have a citation form of the verb, in which case the speaker may offer a relatively bare form that turns out to have a zero third person subject in a particular tense or aspect. While many languages have infinitive forms that can readily be elicited, the singular affirmative imperative is another possibility that one might get when asking “How do you say ‘to eat’?” In some cases the said imperative is the bare verb stem, and so this works out well.

In order to catch up rapidly with the nouns we have elicited, (11) presents the first 40 verbs that I obtained from the alphabetic verb list:

UC Berkeley Phonology Lab Annual Report (2010)
(11) a. ‘accompany’ sëjómtò L-L u. ‘blow nose’ sëmis L
b. ‘admire, like’ sëyākôń M-HL v. ‘break, snap’ sëkôl L
c. ‘answer’ sëbëmè M-HL w. ‘break wind’ sëfies L
d. ‘ascend’ sëkô k ML x. ‘breathe’ sëzûoi L-L
e. ‘ask’ sëbî `f ML y. ‘burn, roast’ sëŋôk L
f. ‘assemble’ sëcîntîn L-L z. ‘burnt (get)’ sëfôd ML
g. ‘avoid’ sëbâm ML aa. ‘buy’ sëyûn ML
h. ‘(be) bad’ sëyôbîf M-HL bb. ‘call, read’ sêjâŋ L
i. ‘bake in ashes’ sëfim L cc. ‘carry on head’ sëbê L
j. ‘bark’ sëbô `f ML dd. ‘carve’ sëkôm ML
k. ‘beat’ sêṭl L ee. ‘catch’ sêkô ML
l. ‘beg’ sêlîn ML ff. ‘choose’ sêcîk ML
m. ‘begin’ sêyîtê L-L gg. ‘clear (be), dawn’ sêyû L
n. ‘bend (over)’ sëŋvûtê M-HL hh. ‘clear (grass)’ sêtêm ML
o. ‘(be) big’ sëyâyâk M-HL ii. ‘come’ sēgwi L
p. ‘(give) birth’ sëbîi M-HL jj. ‘cook’ sënaî M-HL
q. ‘bite’ sêlôm ML kk. ‘cough’ sêkësê M-HL
r. ‘(be) bitter’ sëyôlû M-HL ll. ‘count’ sêtâŋ ML
s. ‘(be) black’ sëyôñì M-HL mm. ‘cover’ sêcîtê M-HL
t. ‘blow w/mouth’ sêtôŋ ML nn. ‘crawl’ sênâŋlê L-L

As seen, Oku does have an infinitive form, marked by the M tone prefix sê-, alternately realized [sû]. Since its tone is stable, I have schematized only the tone pattern of the verb stem, which can have one or two syllables. There is considerably less tonal variation among these infinitives than in nouns: If monosyllabic, the tone will be ML or L; if bisyllabic, it will be M-HL or L-L. The number of each type is indicated in (12).

(12) a. ML : 15 b. L : 9
 M-HL : 11 L-L : 5

As seen, the higher tone pattern accounts for 26 verbs, the lower tone patterns for 14, i.e. in an almost two to one ratio. There is some reason to think that the bisyllabic verbs are bimorphic, consisting of a root and an affix. The bisyllabic verbs whose first syllable is [yâ] are stative in meaning (cf. sëyâyâk ‘to be big’ vs. sêyô ‘to become big’), while the remaining bisyllabic verbs appear to end in a suffix of the shape -Ce, e.g. sëŋvûtê ‘to bend (over)’, sênjîtê ‘to crawl’.

In fact, by comparing the plural noun kâsê ‘baskets’ with (sê-)yîtê ‘to begin’, we can establish the likelihood that L- and L are contrastive, i.e. we cannot predict the difference between the two on the basis of syllable structure or anything else.

We have thus established that most monosyllabic verbs have a ML tone in the infinitive, a pattern which was rare on noun stems. The same can be said about L and L-L, which were in the minority in nouns. Clearly there is a skewing between nouns and at least infinitive verb tones. To figure out what this is requires analysis. For this purpose let us move on to Stage II, whereby we attempt to determine how tones affect each other when they are combined in context.

3. Stage II: Discovering tonal alternations
Now that we have established the surface contrasts we move on to consider how the different tones behave in context. If tones undergo changes when they combine with each other, we want to know what these “alternations” are. We also want to be sure that all forms which we have identified with the same tone alternate in the same way. Below we will discover, for instance, that there are two kinds of M-H nouns as well as two kinds of M-HL nouns.

As was mentioned in §1, there are two places to look for tonal alternations: within the word and across words. For the first context one has to study the morphology, particularly paradigmatic relations between words. It is typically in the verb paradigm that one finds the most “morphotonemics”: Verb tones are frequently conditioned in part or in whole by inflection features such as tense, aspect, mood and negation. In some languages the tone changes according to the person or number of the subject, while in others transitive vs. intransitive contrasts can be tonally marked. Since verbs can become extremely complicated, we will instead first focus on singular-plural pairs in nouns. After this we will turn to modifiers and ‘noun of noun’ genitive constructions to investigate tonal alternations at the phrase level.

3.1. Word-level alternations

Nouns which take their plural by adding the suffix -se show significant tonal alternations. The patterns we have seen thus far are summarized in (13a-g).

(13) singular + plural -se example #
 a. L → L-L˚ ká ká-sè˚ ‘basket(s)’ 15
 b. ML → M-L˚ ntō˚k ntō-k-sè˚ ‘bundle(s)’ 11
 c. L˚ → L-H njàm˚ njàm-sè˚ ‘axe(s)’ 5
 d. H → H-H sói sói-sé ‘caterpillar(s)’ 7
 e. H-H → H-H-H bóbók bóbók-sè˚ ‘cheek(s)’ 2
 f. HL → H-M nyàm nyàm-sè˚ ‘animal(s)’ 11
 g. L˚ ~ H → HM-H jím˚ ~ jím jím-sè˚ ‘back(s)’ 1
 h. M → M-H 4
 i. M → H-H 3

In the last column I have indicated how many such examples there are from a corpus of 225 nouns. It turns out that the two patterns in (13h,i) did not turn up in the elicitation of the first 40 nouns. Setting aside (13e), where the singular is bisyllabic, and (13g) of which there is only one example, there are seven common patterns, illustrated in (14).

(14) a. L → L-L˚

ká ká-sè˚ ‘basket(s)’
ŋgie ŋgie-sè˚ ‘calabash(es)’
mbàk mbàk-sè˚ ‘cave(s)’
mbàk mbàk-sè˚ ‘cloud(s)’
lòm lòm-sè˚ ‘dry season(s)’
mbɔŋ mbɔŋ-sè˚ ‘bushcow(s)’
mbɔŋ mbɔŋ-sè˚ ‘fence’
bŋ bŋ-sè˚ ‘marrow, brain(s)’
b. \(L^* \rightarrow L-H \)
\[
\begin{align*}
njâm & \rightarrow njâm-sé 'axe(s)' & \eta kfo & \rightarrow \eta kfo-sé 'rope(s)' \\
bâi & \rightarrow bâi-sé 'father(s)' & ntêk & \rightarrow ntêk-sé 'village(s)' \\
njia & \rightarrow njia-sé 'flesh(es)' & &
\end{align*}
\]

c. \(M \rightarrow M-H \)
\[
\begin{align*}
ndôi & \rightarrow ndôi-sé 'cloth(s)' & \text{ntk} & \rightarrow \text{ntk-sé} 'night(s)' \\
njôŋ & \rightarrow njôŋ-sé 'moon(s)' & \eta gôk & \rightarrow \eta gôk-sé 'termite(s)' \\
\end{align*}
\]

d. \(M \rightarrow H-H \)
\[
\begin{align*}
sô & \rightarrow sô-sé 'fish' & \text{kân} & \rightarrow \text{kân-sé} 'monkey(s)' \\
\text{kfn} & \rightarrow \text{kfn-sé} 'hill, mountain(s)' & &
\end{align*}
\]

e. \(H \rightarrow H-H \)
\[
\begin{align*}
yûo & \rightarrow yûo-sé 'bee(s)' & \text{má} & \rightarrow \text{má-sé} 'lake(s)' \\
\text{soî} & \rightarrow \text{soî-sé} 'caterpillar(s)' & \text{gvî} & \rightarrow \text{gvî-sé} 'maggot(s)' \\
\eta kâñ & \rightarrow \eta kâñ-sé 'cornbeer(s)' & \text{njâñ} & \rightarrow \text{njâñ-sé} 'xylophone(s)' \\
\text{jût} & \rightarrow \text{jût-sé} 'hunger(s)' & &
\end{align*}
\]

f. \(ML \rightarrow M-L^* \)
\[
\begin{align*}
tô'k & \rightarrow ntôk-sé 'bundle(s)' & \text{ndô} & \rightarrow \text{ndô-sé} 'horn(s)' \\
\eta \text{gvô} & \rightarrow \eta \text{gvô-sé} 'chicken(s)' & \text{ndâ} & \rightarrow \text{ndâ-sé} 'house(s)' \\
\text{ntû} & \rightarrow \text{ntû-sé} 'chief's palace(s)' & \text{ntûm} & \rightarrow \text{ntûm-sé} 'message(s)' \\
\text{ntôm} & \rightarrow \text{ntôm-sé} 'cooking stone(s)' & \eta jôŋ & \rightarrow \eta jôŋ-sé 'thorn(s)' \\
\eta kâ'k & \rightarrow \eta kâ'k-sé 'crack(s)' & \eta gê 'k & \rightarrow \eta gê-k-sé 'trouble(s)' \\
\text{ntê} & \rightarrow \text{ntê-sé} 'ground(s)' & &
\end{align*}
\]

g. \(HL \rightarrow H-M \)
\[
\begin{align*}
\text{nyâm} & \rightarrow \text{nyâm-sé} 'animal(s)' & \text{fê} & \rightarrow \text{fê-sé} 'bush rat(s)' \\
\text{giê} & \rightarrow \text{giê-sé} 'bundle(s)' & \text{gwûô} & \rightarrow \text{gwûô-sé} 'skin(s)' \\
\text{bùô} & \rightarrow \text{bùô-sé} 'dog(s)' & \text{yûo} & \rightarrow \text{yûo-sé} 'snake(s)' \\
\text{nâi} & \rightarrow \text{nâi-sé} 'goat(s)' & \text{cûi} & \rightarrow \text{cûi-sé} 'sun' \\
\text{nôñ} & \rightarrow \text{nôñ-sé} 'hair(s)' & \text{giê} & \rightarrow \text{giê-sé} 'voice(s)' \\
\text{fê} & \rightarrow \text{fê-sé} 'hoe(s)' & &
\end{align*}
\]

From the above we note the following concerning the tone of the plural suffix -se: (i) The tone can be H, M or L*. (ii) L* occurs only after a L or ML root. (iii) M occurs only after a HL root. (iv) H occurs after L*, M and H roots. It should also be noted that the first tone in (14a,b) is a level L tone, not a falling L, which contrasts with L* only before pause.

As in segmental phonology, when faced with alternations, one has to consider several alternatives. The first question is whether one should try to set up a single underlying form from which the surface allomorphs can be derived, or whether to assume allomorphy, e.g. assign -se with the L*, M or H tone allomorphs as per the preceding paragraph. Since these suffix alternants are so similar, differing only in tone, let us assume that we want to derive the three surface allomorphs from one underlying tonal representation. This naturally brings us to the question of what that tone should be: Should be one of the three surface realizations (L*, M, H), or are these three tones all derived from a fourth, perhaps more abstract tonal representation?

If one considers the contexts in which these allomorphs are realized, it would appear that there is an assimilatory process at work: Level L tone -se* is found only after L or ML, i.e. only
when the stem ends L. On the other hand, H -sê is found in three contexts: after L˚, M and H. (I will address M tone -sê momentarily.) If we started with the suffix having an underlying L tone of some sort, we would have to dissimilate /-sê/ to H tone after another L˚. While not unheard of, the reverse analysis, /-sê/ seems more plausible on two counts: First, the change of /H/ to L˚ after L˚ would be a case of assimilation, which is of course more common than dissimilation. Second, the disparate environments in which surface -sê is found, namely after (input) L˚, M or H, suggests that it is the “elsewhere” case, i.e. the realization of the surface when not modified by context. Assuming that this is correct, we can now consider the following tentative and informal rules, which will be modified in §4:

(15) a. H → L˚ / L __ e.g. /njâm-sê/ → njâm-sê˚ ‘axes’
 / ML __ e.g. /ndôñ-sê/ → ndôñ-sê˚ ‘horns’
 b. H → M / HL __ e.g. /nâm-sê/ → nâm-sê˚ ‘animals’

The natural question to ask is why /-sê/ is realized sometimes L˚, sometimes M, i.e. why isn’t the output in (15a) L-M, or, alternatively, why isn’t the output of (15b) H-L˚? The latter, of course, cannot occur on nouns with a prefix (which can only be M or L), but this does not explain why it cannot occur on nouns which form their plural with the suffix /-sê/. Even the following exceptional patterns which each have one attestation in my corpus do not produce such an output:

(16) a. LH → LH-H nciić nciísé ‘chief’s house(s)’
 b. H → H-M jém jémsê ‘dream(s)’
 c. HM → HM-H jí’ jí’sé ‘path(s)’
 d. L-L → L-L-L˚ ndàakò ndàakösê ‘tobacco(s)’
 e. L˚ → H → H-H jim ~ jím jínésé ‘back(s)’
 f. M-H → M-H-H ñgöömé ñgöömésé ‘locust(s)’
 g. H-H → H-H-H bóbök bóbóksé ‘cheek(s)’

In addition to the example in (16g) we can recall yúolé ‘bee’ (pl. yúolésé), also H-H, an alternate to the shorter form yúo (pl. yúosé). It is likely that kétisé ‘charcoal’ is an invariant plural.

Within my corpus of 225 singular nouns, only one has H-L˚ tone, bilèñ ‘groundnut’. Even more intriguing is the fact that singular nouns can be L-L˚ or L-ML, but not L-M: there is not a single example of the latter in my corpus of 225 nouns. We will account for this in §4, but first we need to consider alternations which occur at the phrase level.

3.2. Phrase-level alternations

In many Niger-Congo languages interesting tonal alternations take place at the phrase level. Once one has collected and verified the tones of a reasonable number of nouns, it is thus customary to put them together with various modifiers and in different contexts within the sentence. The way to approach this is to first determine the range of tonal patterns on nouns in isolation, and then systematically combine every logical tonal sequence. In order to do this we need a bigger corpus than the 40 nouns we have considered thus far, particularly as concerns bisyllabic nouns, the majority, which are formed with a prefix + monosyllabic stem. In (17) I list
all of the attested patterns with one or two examples of each and indicate in the last column how many nouns have each pattern. (I counted only singular bisyllabic nouns.)

(17)

(a) L-L kêtâm ‘elephant’ kòŋwi ‘stranger’ 6
(b) L-L˚ kòŋgm˚ ‘plantain’ kànčès˚ ‘cricket’ 4
(c) L-ML këŋgëi ‘fence’ kòŋkwùò ‘cadaver’ 7
(d) M-H këvôf ‘bone’ fënnùn ‘bird’ 60
(e) M-HL këkòs ‘slave’ kêtâm ‘trap’ 69
(f) M-HM mìnô ‘water’ 1
(g) ML-L nji’wil ‘canerat’ 1
(h) H-L˚ bìlëŋ˚ ‘groundnut’ 1
i. H-H yülë ‘bee’ bòbòk ‘cheek’ 3

For comparability, wherever possible I have given examples with a CV- singular prefix, mostly ke-. As seen in the last column, 129 out of 152 (84.9%) of the bisyllabic nouns have either a M-H or M-HL tone pattern. Usually when there is such a skewing, it means one of two things: The first possibility is that two patterns represent the basic underlying system, either directly or indirectly. For instance, perhaps the H and HL roots of M-H and M-HL nouns will ultimately be analyzed as /H/ and /L/, respectively. The second possibility is that one or both patterns represents a neutralization of different underlying forms. This in turn would mean that there were more patterns historically, but they have merged into these two.

The way to test these (or perhaps other) hypotheses is to see what happens when representative tokens of each tone pattern occur in context. One cannot tell in advance what the best “frame” will be for discovering tonal alternations (if they occur) or if there will be more to learn from placing these tokens before vs. after another word. It is sometimes it is necessary to do both. Logical strategies are to get nouns with their basic modifiers: possessive pronouns, demonstratives, adjectives, numerals. In doing phrasal tonology, I try as much as much possible to start with forms which are framed by consonants. In this case this means nouns which have a CV- prefix and a root shape CVC. After getting the tone patterns with each syllable remaining distinct, one can go on to see what happens with V+V sequences, which potentially coalesce, perhaps producing further tonal complications.

Restricting ourselves first to M-H and M-HL nouns, the two nouns in (18) are shown followed by various modifiers:

(18)

këkòs ‘slave’ këvôf ‘bone’

(a) këkòs ãkóm këvôf ãkóm ‘my’
këkòs ãkëì këvôf ãkëì ‘your (sg)’
këkòs ãkën këvôf ãkën ‘our’ (excl)
këkòs ãkën këvôf ãkën ‘your (pl)’
(b) këkòs ã wiìn këvôf ã wiìn ‘his/her’
këkòs ã yïn këvôf ã yïn ‘their’
(c) këkòs kin këvôf kin ‘this’ (near speaker)
këkòs ki këvôf ki ‘that’ (near hearer)
In (18a) we observe that the first and second person possessives begin with a L tone vowel \(\dot{e} - \dot{a} \). Since this vowel drops out obligatorily after a vowel and optionally after a nasal consonant, as seen in (19), the two nouns in (18) were chosen because they end in a fricative.

(19) a. \(\text{kéfó} + \dot{kó} \text{m} \rightarrow \text{kéfó kó} \) ‘my medicine’
 b. \(\text{kekém} + \dot{kó} \text{m} \rightarrow \text{kekém kó} \) ‘my crab’

As seen, the HL of ‘slave’ simplifies to H, thereby merging tonally with the H input of ‘bone’. The two also merge before demonstratives in (18d) and before numerals, ‘which’, and adjectives in (18d-f). (Interestingly, the L of \(\text{kékó} \) has no effect on the following H of \(\text{kíì} \) ‘that (far)’ in (18c).)

The remaining forms which show a difference between the two nouns concern the third person possessive pronouns in (18b) and the subject-verb agreement marker in (18g). In both cases the marker is M after \(\text{kékó} \) and H after \(\text{kévóf} \). The same difference is observed when the two nouns are possessed by a noun in a ‘N₁ of N₂’ genitive construction:

(20) a. \(\text{kekós} \dot{\text{ó} kəŋ\text{gwí}} \) ‘the slave of the stranger’
 b. \(\text{kévóf} \dot{\text{ó} kəŋ\text{gwí}} \) ‘the bone of the stranger’

In these cases the L part of the HL tone clearly causes the following H to become M, giving us a rather clear indication that at least some of our M tones come from the lowering of H. Although not shown here, it is important to note that all M-HL nouns have the same tonal properties with respect to the contexts in (18), as do all M-H nouns. We thus cannot yet say which of two hypotheses accounts for the preponderance of these tone patterns, i.e. whether they exhaust the tonal possibilities, perhaps being underlying /L/ and /H/, respectively, or whether they represent the merger of different historical tone patterns.

The question is resolved when we place M-HL and M-H nouns in the N₂ position of the ‘N₁ of N₂’ genitive construction. While one ultimately will want to establish a list of animate nouns which are semantically appropriate as N₂ possessors so that the N₁ of N₂ combinations make sense, one strategy I often use is to put the word ‘place’ in N₁ position, and then ask for ‘the place of __’, filling in the blank with almost any noun in the corpus. I illustrate some of the results in (21), where H tone \(\dot{d} (\sim \dot{e}) \) is the genitive marker for most noun classes:

(21) a. \(\text{kékó} \) ‘slave’ \(\text{kélík} \dot{\text{ó} kékó} \) ‘place of the slave’
 b. \(\text{kéták} \) ‘snail’ \(\text{kélík} \dot{\text{ó} kéták} \) ‘place of the snail’
 c. \(\text{kébám} \) ‘bag’ \(\text{kélík} \dot{\text{ó} kébám} \) ‘place of the bag’
 d. \(\text{féyám} \) ‘mat’ \(\text{kélík} \dot{\text{ó} féyám} \) ‘place of the mat’
b. kétám ‘trap’ kělík ó kétám ‘place of the trap’
kēbǐn ‘dance’ kělík ó kēbǐn ‘place of the dance’
kēbān ‘fufu’ kělík ó kēbān ‘place of the fufu’
fētēm ‘calabash’ kělík ó fētēm ‘place of the calabash’
c. kēvóf ‘bone’ kělík ó kēvóf ‘place of the bone’
kēkém ‘crab’ kělík ó kēkém ‘place of the crab’
kēfēm ‘cockroach’ kělík ó kēfēm ‘place of the cockroach’
kēkōf ‘tick’ kělík ó kēkōf ‘place of the tick’
d. kēlāŋ ‘cocoym’ kělík ó kēlāŋ ‘place of the cocoym’
kēfō ‘medicine’ kělík ó kēfō ‘place of the medicine’
fēnōn ‘bird’ kělík ó fēnōn ‘place of the bird’
tēvōl ‘hairs’ kělík ó tēvōl ‘place of the hairs’

e. kētām ‘elephant’ kělík ó kētām ‘place of the elephant’
kēŋgēi ‘fence’ kělík ó kēŋgēi ‘place of the fence’

Two things are rather remarkable in (21). First, the prefix of the N₂ noun is always L. There are no exceptions. Second, the M-HL and M-H nouns each show two different patterns in N₂ position: M-HL nouns may be realized L-L, as in (21a), or L-ML, as in (21b). M-H nouns may be realized L-M, as in (21c), or L-L*, as in (21d). As seen, the four N₂ patterns are phonetically distinct: L-L, L-ML, L-M, L-L*. Since we cannot predict which of the two possibilities will correspond to the M-HL or M-H isolation tone, we must assume that the differences between the four groups in (21) are contrastive.

I trust the reader will already have ideas how to analyze the nouns in (21). We will however put off an analysis until §4. For now we are content to conclude that the reason why 84.9% of the bisyllabic nouns are either M-HL or M-H in isolation is that these represent four historical patterns. This leaves the question about what to do with the remaining nouns. First, it can be noted that nouns which start with L or M root or a L prefix do not change in N₂ position:

a. kā ‘basket’ kělík ó kā ‘place of the basket’
b. nēk˚ ‘village’ kělík ó nēk˚ ‘place of the village’
c. nēs˚ ‘coat’ kělík ó nēs˚ ‘place of the coat’
d. nēn˚ ‘horn’ kělík ó nēn˚ ‘place of the horn’
e. kēt˚ ‘elephant’ kělík ó kēt˚ ‘place of the elephant’
f. kēŋg˚ ‘fence’ kělík ó kēŋg˚ ‘place of the fence’

On the other hand, the root H of a prefixless noun becomes M:

a. n˚ ‘children’ kělík ó n˚ ‘place of the children’
b. b˚ ‘dog’ kělík ó b˚ ‘place of the dog’
c. j˚ ‘road’ kělík ó j˚ ‘place of the road’
but: d. n˚k˚ ‘cornbeer’ kělík ó n˚k˚ ‘place of the cornbeer’

As seen, (23d) is an exception, as I suspect nj˚ ‘xylophone’ may also be (cf. §4).

The data in (24) show how some of the longer forms are affected:

193
(24)

a. kēyēkōli ‘cowry’
kēlik ṣ kēyēkōli ‘place of the cowry’

b. kētōōlē ‘ear’
kēlik ḳ kētōōlē ‘place of the ear’

c. ēblōmīn ‘man’
kēlik Ṣblōmīn ‘place of the man’

d. būosē ‘dogs’
kēlik ḳ būosē ‘place of the dogs’

e. kānsē ‘monkeys’
kēlik ḳ kānsē ‘place of the monkeys’

but:
f. ṣkānsē ‘cornbeers’
kēlik ṣ ṣkānsē ‘place of the cornbeers’

In (24a,b) we see the lowering of kē- to kê-. The same occurs in (24c), where the prefix fuses with the genitive marker. In all three examples the root-initial H tone becomes M after the L N₂ prefix. In the case of ‘ear’ the HM of the root becomes ML; when the genitive ḳ fuses with Ṣblōmīn, the L of the prefix is not realized (see §4). In the plural forms in (24d,e) the H of the root lowers to M, and the H-M of ‘dogs’ is realized M-L˚, i.e. with both tones being lowered. Again we see in (24f) that ‘cornbeers’ is exceptional, just as it was in the singular in (23d).

Finally, one last context we will consider is the realization of nouns after the prepositions nò ‘with’ and sò ‘to’:

(25)
a. kēkōs ‘slave’
nò kēkōs ṣé sō kēkōs ṣé

b. kētám ‘trap’
nò kētám ṣé sō kētám ṣé

c. kēvʊf ‘bone’
nò kēvʊf ṣé sō kēvʊf ṣé

d. kēlāŋ ‘cocoym’
nò kēlāŋ ṣé sō kēlāŋ ṣé

The nouns in (25) represent the four tone groups distinguished in (21). Most noun classes in Oku require an /é/ marker to follow the noun in a prepositional phrase. This marker shows the same L˚, M, and H variations as the /-sé/ plural suffix and is hence appropriately recognized as underlyingly H. Interestingly, the two M-HL tone classes show different effects on the /é/ marker, which becomes L˚ in (25a), but M in (25b). While the prefixes have become L, the following H tones do not lower to M. Unlike the L of the prefixes in N₂ position, which is morphologically assigned early enough to lower H tone to M, the L of the prefixes in (25) is a result of a later assimilation to the (M)L of the preposition (see (39)-(41) below).

With the above alternations established, we are now prepared to move on to the analysis.

4. Stage III: Developing a tonal analysis

In order to construct an analysis, Stage III will draw on everything that has preceded: the surface contrasts, distributional constraints, alternations. In §2 and §3 we have have established the following concerning the tone system of Oku:

(26)
a. surface contrasts

i. three tone heights (H, M, L)

ii. a level L˚ tone which contrasts with L only before pause

iii. falling contours: HM, HL, ML

iv. no rising contours, with one exception (ncìì ‘chief’s house’)

b. noun tone patterns

i. 2/3 of the nouns are bisyllabic, consisting of a prefix and a monosyllabic root
ii. prefixes are mostly M, occasionally L, never H

iii. M-HL or M-H in isolation

iv. prefixless nouns form their plural with the suffix /-sé/

v. there are both word- and phrase-level tonal alternations

c. verb infinitive patterns

i. infinitives take a sé- prefix plus a monosyllabic or bisyllabic root

ii. monosyllabic roots contrast ML vs. L

iii. bisyllabic roots contrast M-HL vs. L-L

d. alternations

i. the plural suffix /-sé/ and prepositional phrase marker /é/ alternate between H, M and L’

ii. M tone noun prefixes are /L/ as N₂ in the N₁ of N₂ genitive construction

iii. there are two subclasses of M-HL nouns, one which alternates with L-L and the other with L-ML as N₂

iv. there are two subclasses of M-H nouns, one which alternates with L-M and the other with L-L’ as N₂

It is at this stage that the work becomes most theory-dependent: Does the analyst want to stay fairly close to the surface in developing an account, or is s/he willing to become abstract? Either way, the choice of framework can have a major effect on both the ultimate outcome, but also on what the analyst pays attention to—different frameworks are interested in different aspects of grammar/phonology. For our purpose, I will follow a classical autosegmental approach which turns out to be both revealing and description-friendly.

The key question which we have to resolve concerns the nature of underlying tonal representations. If the language distinguished only two tone heights, phonetic H and L, the question we would be asking is whether the underlying system contrasts /H/ vs. /L/, or whether one of the tones can be “zeroed” out rather than involving the two tonal values /H/ and /L/. An analysis of /H/ vs. Ø (more rarely, /L/ vs. Ø) is quite warranted in some languages. The major criterion is whether both or only one of the tone heights is “phonologically active”. That is, we seek to posit only those tones which are invoked by the language’s distributional constraints and rules. For instance, if the language allows HL and/or LH contours on a single tone-bearing unit (e.g. a syllable or mora), then both tones are needed. If, on the other hand, such contours are lacking, the distributions and constraints/rules refer only to H, and the L pitch shows no evidence of being phonologically active, we can entertain the possibility of a “privative” /H/ vs. Ø system.

When a system has three or more surface-contrastive tone heights, similar questions arise as to whether any one of the tones can be zeroed out, for example the M tone, which is the default pitch on noun prefixes in Oku. Both from a logical standpoint and from the presence of HM, HL, and ML contours, it is obvious that Oku tone cannot be analyzed as privative. A more basic question, however, is to ask whether the surface-contrastive H, M, L system requires an UNDERLYING ternary contrast in tone height, or whether one of the three heights is derived. I will now suggest that the underlying system is /H/ vs. /L/ in Oku, and that all M tones are derived, as is the contrast between L’ and L.

Let’s start with the alternations we saw in (21). Recall that the two surface noun patterns M-HL and M-H each divide into two subclasses, and that the forms these take as N₂ are as indicated in (27).
Following the surface N_2 tone patterns are the proposed underlying representations. In order to derive the former from the latter, we need several rules, including the two in (28).

(28) a. $H \rightarrow M$ / L
 b. $LH \rightarrow L^* / L \text{ }_\text{pause}$

The first rule converts H to M after L. This produces N_2 L-ML and L-M in (27b,c). The second rule simplifies a LH rising tone into a level L^* when preceded by a L and followed by pause. This produces L-L* in (27d). Depending on whether (28a) applies before (28b), in which case /L-LH/ would first become L-LM, the rule might instead be written to simplify LM to L^*.

The reason why the L occurs in the left environment in (28b) is that LH does not become L^* after a H tone (see below). The citation forms and their proposed underlying representations are shown to the right in (27) above. The proposal is that the M of noun prefixes is underlyingly /H/ (and not toneless as was briefly entertained above). The reason is that we need its tone to spread onto the following /L/ root to produce M-HL in (27a). While the citation tones of (27a,b) are phonetically identical, they have different autosegmental representations:

(29) a. $\text{ke-}kôs$ [kē-kôs]
 b. $\text{ke-}tâm$ [kē-tâm]

The representations in (29) of course produce H-HL, rather than the desired M-HL. To achieve the latter, we need to say that the /H/ of the prefix first spreads in (29a), and then is subject to a rule lowering it to M. It is tempting to say that this is the same rule in (28a). For this to go through, we posit a %L boundary tone at the beginning of a small phonological phrase, perhaps the "clitic group". We also need to formulate the rule so that only the first link of the H will be lowered to M in (29a), a problem which Hyman & Pulleyblank (1988) addressed for neighboring Kom (compare also the realization of ‘cowry’ as N_2 $kē'y̆kōlī$ in (24a), where only the first H is lowered to M).

This takes care of the citation forms in (27a,b). The corresponding citation form in (27c) is easily derived from the underlying representation in (30a).

(30) a. $\text{ke-}vôf$ [kē-vôf]
 b. $\text{ke-}lân$ [kē-lân]

The /H-H/ input sequence is realized M-H when rule (28b) applies after %L. What about the citation form in (27d), whose underlying representation is expected to be as in (30b). If the /H-
LH input were to be realized unchanged, it would yield *M-LM instead of M-H. If we allowed H tone spreading to apply, as in (30b), the output would be *M-HLM, even worse. There are several ways we could fix (30b) to derive the correct M-H output. First, we could delete the L prior to the application of (28a), thereby bleeding the application of H tone spreading. Alternatively, we could allow H tone spreading to apply as in (30b) and then delete the L, again prior to the application of (28a). What is important is that the L of the H-LH input in (30b) never has an effect. Thus, the prepositional phrase marker /é/ was seen in to be realized H and not M in (25d). Compare also the H tone genitive marker in kēláŋ ɖ kêŋwi ‘the cocoyam of the stranger’.

Whichever solution we adopt, the effect is the same: input /H-LH/ merges with /H-H/. The simplest solution is probably just to delete the L and not worry about H tone spreading as in (30b). Historically, we know it applied, because closely related languages have a HM contour on such nouns. Thus compare Oku kēláŋ vs. Kom and Mbizinaku álľŋ ‘cocoyam’. It is probable therefore that Oku once had surface M-HM, which was subsequently simplified by dropping the derived M tone: *H-LH > H-HLM > H-HM > H-H.

Having established the above underlying forms and rules, we are now prepared to test both against other forms. In studying a tone system, one should in principle always know why the tones of any given form (word, phrase, utterance) come out the way they do. When there is some question as to why a tone is what it is, this should either be investigated at that moment or marked to come back to (I use a small capital T with a circle around it in my notes). Let’s first test the lowering rule (28a) by placing different tone patterns in N₁ position. We begin with those having a L tone prefix in their citation form (I did not find any /L-H/ nouns):

<table>
<thead>
<tr>
<th>(31)</th>
<th>underlying</th>
<th>surface example as N₁</th>
<th>as N₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>/L-L/</td>
<td>kētām ‘elephant’</td>
<td>kētām 5 kêŋwi ‘elephant of the stranger’</td>
</tr>
<tr>
<td>b.</td>
<td>/L-HL/</td>
<td>kêŋgēi ‘fence’</td>
<td>kêŋgēi 5 kêŋwi ‘fence of the stranger’</td>
</tr>
<tr>
<td>c.</td>
<td>/L-LH/</td>
<td>kêŋgōm ‘plantain’</td>
<td>kêŋgōm 5 kêŋwi ‘plantain of the stranger’</td>
</tr>
</tbody>
</table>

In (31a,b), the H of the genitive marker /š/ is realized M, since it is preceded by a L. In (31b) the L of the ML becomes level L in the process. In (31c), on the other hand, where L* derives from final /LH/, the genitive marker is realized H.

From the preceding we are now in a position to hypothesize that every M tone comes from an underlying /H/ which is preceded by a L tone which must be present underlyingly, although not necessarily realized phonetically on the surface. Consider for example the tone patterns of infinitives which were seen in (11). As was summarized in (12), there are only two tone patterns which differ slightly on mono- vs. bisyllabic verb stems. An example of each is repeated in (32).

<table>
<thead>
<tr>
<th>(32)</th>
<th>monosyllabic</th>
<th>bisyllabic</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>sē-tēl ‘to beat’</td>
<td>sē-jōmtē ‘to accompany’</td>
</tr>
<tr>
<td>b.</td>
<td>sē-lōm ‘to bite’</td>
<td>sē-bēmē ‘to answer’</td>
</tr>
</tbody>
</table>

As in most nouns, we assume that the infinitive prefix sē- is underlyingly H, but lowered to M after the %L boundary tone. This will not be sufficient, however, since it would be expected to spread onto a L root in (32a), yielding *sē-tēl and *sē-jōmtē. An underlying /H/ also does not explain why the first syllable of the stems in (32b) are realized M rather than H, i.e. why we do not obtain *sē-lōm and *sē-bēmē. The get the tones to come out right in (32), we need the
infinitive prefix to be /sê-/ so that the L can both block H tone spreading in (32a) and condition H → M lowering in (32b). We also assume that the root syllable of the verb is /H/ or /L/, but that there is a second /L/ tone, as shown in (33).

(33) a. se-tel b. se-jomte c. se-lom d. se-bême
 \%L \ H L L \%L \ H L L \%L \ H L \%L \ H L L

The evidence for the final L is not seen in (33a), where the root is L, but it is needed in (33c), to combine with the H of the verb root to form a HL stem tone which lowers to ML. As elsewhere, the L of the HL contour delinks when followed by another tone. Finally, (33d) shows H tone spreading from the first to second syllable of the verb stem, thereby forming a contour tone.

Let us first consider (34a-d), which shows the four patterns that occur when a monosyllabic noun begins with an NC complex (additional examples were seen earlier in (14)). As indicated, the monosyllabic singular nouns have all four underlying tone patterns we saw with prefixed nouns in (27): /L, LH, HL, H/. In fact, they have the surface forms that the nouns in (27) have in N2 position, where their prefix is /L/. Of particular note are the M and ML tones in (34c,d), suggesting that they are preceded by a L tone. Since the patterns in (34a-d) concern nouns with an NC complex, it is tempting to attribute the L tone effect to this nasal, which can be related to the Proto-Bantu L tone class 9 prefix. However, we see similar surface tones in (34e-g), where the nouns begin with a plain consonant. (Since all ML nouns begin with NC, there is no corresponding ML example in this second set.) Here too we could posit a “floating” L prefix whose only effect is tonal, e.g. */'-kán/ → kán ‘monkey’. However, there are at least two complications. First, M tone nouns which do not begin NC have a H tone stem in the plural, e.g. kán ‘monkey’, pl. kán-sé (vs. ndši ‘cloth’, pl. ndši-sé in (34c)). Second, other prefixless nouns in the second group are pronounced H, e.g. sói ‘caterpillar (sp.)’. While HL nouns such as búò ‘dog’ (34h) are in complementary distribution with the ML of NC-initial nouns such as ntôk ‘bundle’ (34d), there is a clear contrast between H and M on non-NC-initial nouns.
How should we analyze the complexities in (34)? One solution is to posit a L-prefix on NC-nouns, in both the singular and plural of (34e,f), and in the singular of (34g). Another would be to try to exploit the %L tone we set up to account for the lowering of a /H/ prefix to M. In this case, we would have to say that lowering occurs on NC-initial nouns (34c,d) and on some non-NC initial nouns (34g). To block its application in the plural of (34g) and both singular and plural of (34h,i), one could even posit a H-floating prefix. Or one could adopt both L- and H-floating prefixes. This latter move clearly mirrors the history: class 1 and 9 nouns were historically marked by a L prefix, while class 10 (the plural of class 9) was marked with a H tone prefix. However, there seem to be other things going on as well. Consider the contrast between the two HL nouns in (35a,b).

(35)

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. búò</td>
<td>‘dog’</td>
<td>ntòn</td>
<td>ð búò</td>
<td>‘pot of the dog’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ẹm</td>
<td>‘animal’</td>
<td>ntòn</td>
<td>ð ẹm</td>
<td>‘pot of the animal’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. =</td>
<td>=</td>
<td>ntòn</td>
<td>ð ẹm</td>
<td>‘pot of the animal’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. búo-šè</td>
<td>‘dogs’</td>
<td>ntòn</td>
<td>ð búo-šè</td>
<td>‘pot of the dogs’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. ẹm-šè</td>
<td>‘animals’</td>
<td>ntòn</td>
<td>ð ẹm-šè</td>
<td>‘pot of the animals’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

As seen to the right, where the class 9 N₁ noun ntòn conditions a L tone genitive marker /汉语/, ‘dog’ is realized ML as N₂, while ‘animal’ is realized L. We know from Proto-Bantu and from other Grassfields Bantu languages that ‘dog’ had a *HL monosyllabic stem, while ‘animal’ had a bisyllabic *L-L stem (which becomes monosyllabic L in almost all Grassfields languages). We see this difference in the N₂ realizations in (35a,b). However, notice that ‘animal’ is pronounced HL in isolation, indicating that it somehow picked up a H-prefix. This H-prefix seems also to stay in the alternate N₂ realization in (35c). In (35d,e), the corresponding plurals are both pronounced H-M in isolation, but there is again a difference in N₂ position: ‘dogs’ is M-L*, as expected, but ‘animals’ is pronounced HL-L*. If the H-prefix of ‘animals’ had been lowered in N₂ position, as elsewhere in the language, we would have obtained *ntòn ẹ ẹm-šè. Instead, the H which comes historically from the prefix persists on the stem, as if resisting the morphological assignment of L to the N₂ prefix. The HL contour also fails to simplify before the L* suffix, such that we obtain HL-L* rather than H-L*. This too suggests that the H- is coming in late from the left, thereby escaping the rule.

Recall from (23d) that ọkà ‘cornbeer’ was reported also to resist lowering in N₂ position. Further evidence is presented in (36a,b).

(36)

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. ọkà</td>
<td>‘cornbeer’</td>
<td>ntòn</td>
<td>ð ọkà</td>
<td>‘pot of cornbeer’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ọkà-šè</td>
<td>‘cornbeers’</td>
<td>ntòn</td>
<td>ð ọkà-šè</td>
<td>‘pot of cornbeers’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It turns out that ọkà ‘cornbeer’ and njà ‘xylophone’ are the only H tone nouns which begin with a NC sequence—and are possibly borrowed. As seen in (36) there is again inertia, a failure of a H tone to lower after L. As in the case of the HL on the root ‘animal’ in (35c,e), we need to block the rule in (28a). The most natural way to do this is to posit a floating H tone prefix wherever the H → M rule fails to apply, thus in (35c,e) and (36a,b).

This leaves one issue unresolved: We saw in (34d) that when the /HL-H/ sequence is preceded by the L prefix that accompanies NC-initial nouns, the result is M-L*, as schematized in (37).
(37) a. b. c.
 ntok - se → ntok - se → ntok - se → [ntôk-seʾ] ‘bundles’
 / \ / \ / \ ↓ M
 L HL H L H L H L H L H

In (37a) the underlying representation of /ntôk-se/ ‘bundles’ consists of a floating L prefix, a HL stem syllable, and the H tone plural suffix. In (37b) the L of the HL tone delinks, since it is not final. In (37c) the now unlinked L spreads to the suffix, delinking its H. As also indicated, the root H is lowered to M by the rule in (28a). Since the final unlinked H is not pronounced, we cannot tell if it undergoes lowering to M. However, it does prevent the L of the suffix from downgliding, hence a M-L˚ sequence is obtained.

Now consider the derivation in (38), where the underlying form of /bûo-se/ ‘dogs’ in (38a) has the same HL-H sequence on its stem+suffix, but is this time preceded by a floating H prefix.

(38) a. b. c.
 buo - se → buo - se → buo - se → [bûo-se] ‘dogs’
 / \ / \ / \ ↓ M
 H HL H H H L H H H L H

The same delinking of the L of HL applies in (38b) as we saw in (37b). As seen, however, in (38c), the unlinked L does not spread onto the H suffix, in which case the incorrect output *bûo-seʾ would have been derived. Instead the L stays afloat, simply conditioning the H → M. As a result, the correct output búo-seʾ is derived.

While the sequence H-L˚ is rather rare in Oku, we have seen it in the one isolation example bílèŋʾ ‘groundnut’ in (17h) and in the prepositional phrases in (25a), repeated in (39a)

(39) a. këkôs ‘slave’ /kê-kôs/ nô këkôs eʾ sô këkôs eʾ
 b. kêtâm ‘trap’ /kê-tâm/ nô kêtâm eʾ sô kêtâm eʾ

As seen, ‘with a slave’ and ‘to a slave’ both end with a H-L˚ sequence. As also observed, ‘with a trap’ and ‘to a trap’ end H-M, even though both ‘slave’ and ‘trap’ are pronounced M-HL in isolation. Their different prepositional tones should fall out from the differences in underlying forms: ‘slave’ is underlyingly /H-L/, while ‘trap’ is underlyingly /H-HL/. But how to make this work? Up to now we have treated nouns like ‘trap’ as having an underlying /HL/ falling tone on their stem syllable. If we allow /H-L/ nouns like ‘slave’ to first become H-HL by H tone spreading, they potentially merge. One reasonable alternative is to represent the final L of nouns like ‘trap’ as floating L, i.e. /kê-tâm/, similarly /bûo/ ‘dog’ etc. As we have seen, the final L will link to the preceding syllable only in phrase-final position. With this new hypothesis, we can now account for the differences in prepositional tones as in (40) and (41)
Starting with the different underlying tones in (40a) and (41a), the first rule which applies is H tone spreading in (40b). This is followed by L tone spreading in (40c) and in (41c), where it is assumed that only a linked L tone will spread. (This is known to be the case in neighboring Kom, for example.) At this point we can assume that the H → M lowering rule applies, followed by simplification of contour tones: the H (now M) of /ke-\k\ ç e/ delinks in both examples. In the (40c), the L of -k\ ç has to delink, as does the H of the marker /é/.

There still is a problem, however: We do not expect the final L˚ in n\ ç `bùo-\ se˚ ‘pot of the dogs’, from (35d) above. Assuming the underlying representation in (42), the unlinked L of /`bùo/ ‘dog’ should not spread, and the output should be as indicated:

(42) n\ ç `bùo-\ se © (expected: *n\ ç `bùo-\ se; obtained: n\ ç `bùo-\ se˚)

The question is what the inputs (40) and (42) have in common that final L tone spreading should apply to them, but not to the input in (41). It would seem that for the L to spread onto the final H, it in turn needs to be preceded by a L+H sequence. Since the L is preceded by a L+H+H sequence in (41), L tone spreading does not apply. Whether this is correct, and if so why this should be, are questions that cannot be fully resolved here. I have deliberately chosen to end the section in this way to indicate that parts of an analysis may be anything but fully straightforward. After carefully considering a wide range of facts, we have however been able to conclude with some confidence that the surface H, M, L˚ and L tones can be derived from an underlying binary system, /H/ vs. /L/, in most cases by completely general rules.

5. Additional considerations

In the preceding sections I have distinguished between three logical stages of tonal investigation: Stage I consists of establishing the surface contrasts, Stage II the alternations (if any), and Stage III the analysis. As we have seen Stage III is the most open-ended, subject to multiple interpretations, and most likely to be affected by new discoveries. In this last section I would like to briefly consider two additional questions: First, where does instrumental investigation of the tonal properties come in? Second, what about tonal orthography?

5.1. Instrumental investigations

As was seen in §2-4, the three stages that I envision have been presented without any reference to the instrumental investigation of tone. Stage I consists of basically listening and comparing the
surface tones (pitches), just as one would do to establish the consonant or vowel inventory. In my view students and field researchers alike are tempted to look at instrumental data too early. In my field methods courses I thus discourage using PRAAT, Wave Surfer etc. as a means of discovering the surface contrasts. Of course one may be interested in the precise acoustic properties of the surface-contrastive sounds, whether consonants, vowels or tones—and there are some questions and hypotheses that can only be addressed instrumentally. The problem with looking at the f0 properties of tones too early is the tendency to interpret them literally. In one field methods class, for example, the picture was emerging that the language contrasted H and L on non-final syllables and, in addition, LH and HL contour tones in final position. At one point a quite capable graduate student argued with me that what we had established as a H tone was really also a falling tone because there was a slight fall in the pitch traces. I admit I kind of lost it that time, having already warned them not to insist on such a literal interpretation. So, with perhaps inappropriate exasperation I asked, although I don’t remember in which order: “How many H tones have you ever seen on a screen?” “What does it SOUND like to you?” I doubt that one can read the perceptual properties of tones from the acoustic record, but, whatever one can do, I am sure that it takes quite a bit of training.

Recently, Katherine Bolanos showed me some wonderful spectograms and pitch traces of word tokens from Kakua, a language spoken in Colombia, possibly belonging to the Kakua-Nukak family. Among the pitch traces which she subsequently sent to me were the following two, both concerning words which are segmentally dawa:
If we look at Figure 1, it clearly starts out fairly low and ends rather high. However, the second syllable seems to have a continuous rise in it, suggesting maybe a L-LH transcription. Listening to it, however, it was clear that it was perceptually [L-H]. To have been L-LH, the transition from L to H would have had to take place later in the syllable. Figure 2 represents the reverse situation: In it there seems to be a higher pitch on the first syllable which falls throughout the second, perhaps suggesting a H-HL sequence. However, perceptually it is H-L. Had it been H-HL, the pitch change would have taken place later in the second syllable. Since we know that pitch targets are reached late on a tone-bearing unit, this is not surprising: Although the L-H and H-L sequences reach their second target (H and L, respectively) rather late in the second syllable the trajectories are not steep enough to be interpreted as a second syllable LH and HL.

The above examples are relatively clear, as far as pitch tracing goes. When looking at full sentences, the task of going from the pitch traces to the tones becomes even more difficult. Consider Figure 3, also provided by Katherine Bolanos:
Again, L-H [dáwá] and [dáwà], whose tones Bolanos marks on the second syllable, are fairly clear, but what are the tones on -ʔa-naʔ-na (classifier.tree.like-progressive)? It may be a simple H-L-H sequence on short vowels, the first tone might be HL, or the last tone might be M or ML. The best way to solve this is to follow Stage I and carefully control for tonal possibilities. Only afterward will it make sense to do instrumental work—and especially only when the researcher wants to test specific hypotheses, e.g. is the last tone in Figure 3 lower than the first tone because of a non-contrastive downstep conditioned by the intervening lower pitch?

5.2. Tonal orthography

The other issue to discuss has to do not specifically with tonal transcription, which was discussed in §1, but with tonal orthography: Once a tone system is analyzed, how should tone be indicated in the written language? Unfortunately, there is a tendency to ignore tones in writing systems, as if they were expendable (cf. Hyman, in press). As a linguist I of course would ideally like all tones to be written, perhaps zeroing out one of them as an orthographic convenience. However, as we have seen in Oku, there are quite a few tonal contrasts that would have to be distinguished: H, M, L˚, L, HL, ML. Given the motivation to keep orthographies as simple as possible, the question naturally arises as to how little of the tone system needs to be encoded—and in what form (underlying? phonetic?). Various researchers have approached the question experimentally, comparing the effects of writing all, some or no tones on reading comprehension (see bird 1999a,b). Although the question goes beyond descriptive tonology, it seems intuitive that the importance of tone marking will vary with the importance of tone in the grammar and lexicon. As mentioned, some tone languages have few minimal pairs, while others have many. In Iau, a Lakes Plain language of New Guinea, eight different tone patterns are distinguished on
monosyllabic words. As seen in (43), Bateman (1990:35-36) shows that these tones have a lexical function on nouns vs. a morphological function on verbs:

(43) The 8 tone patterns of Iau (’ = a super-high tone)

<table>
<thead>
<tr>
<th>Tone</th>
<th>Nouns</th>
<th>Verbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>bé ‘father-in-law’</td>
<td>bá ‘came’</td>
</tr>
<tr>
<td>M</td>
<td>bē ‘fire’</td>
<td>bā ‘has come’</td>
</tr>
<tr>
<td>H-H</td>
<td>bē’ ‘snake’</td>
<td>bá’ ‘might come’</td>
</tr>
<tr>
<td>LM</td>
<td>bē’ ‘path’</td>
<td>bā’ ‘came to get’</td>
</tr>
<tr>
<td>HL</td>
<td>bē ‘thorn’</td>
<td>bā ‘came to end point’</td>
</tr>
<tr>
<td>HM</td>
<td>bē’ ‘flower’</td>
<td>bā’ ‘still not at endpoint’</td>
</tr>
<tr>
<td>ML</td>
<td>bē’ ‘small eel’</td>
<td>bā’ ‘come (process)’</td>
</tr>
<tr>
<td>HLM</td>
<td>bē’ ‘tree fern’</td>
<td>bā’ ‘sticking, attached to’</td>
</tr>
</tbody>
</table>

It is hard to imagine not writing tone in an Iau orthography.

Inevitably the answer may depend on who the orthography is intended for. If for native speakers who know the language well, there is room to take advantage of the linguistic knowledge they bring to the tasks of reading and writing. If for linguists or language learners, it will be of course important to include as much detail as possible. As elsewhere in linguistics, spelling should not be confused with sounds, in this case tones.

Appendix: More on Citation vs. Contextual Tones

In §1 it was suggested that the study of tone should begin by considering the properties of words in isolation. This is standard field practice, whether the object is to transcribe consonants, vowels, or other sound properties. However, it is known that citation forms do not necessarily reveal the full system. Although this also happens with segments, e.g. when voicing contrasts are neutralized word- or utterance-finally, as in German or Russian, most tonologists would probably agree that the problem is greater in the study of tone. We saw that there are two kinds of M-H in Oku, also two kinds of M-HL. That is, we could not establish the full range of underlying contrasts based on the surface constrasts of words in isolation. Still, it was important to start by identifying the different tone heights and the contour tones that they form. In this section I would like to briefly present some of the hidden properties of tone that one could not get from citation forms alone. I will then conclude with a final warning about contextual effects on tone.

Perhaps the most extreme case of neutralization in citation forms comes from Coreguaje, a Tukanoan language of Colombia, where, as seen in (44), CVCV noun tones all merge as L-HL in isolation:

(44) CVCV: Basic form statement question CVV: Basic form statement question

<table>
<thead>
<tr>
<th>Tone</th>
<th>Basic form</th>
<th>Statement</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-H</td>
<td>L-HL</td>
<td>H-L</td>
<td></td>
</tr>
<tr>
<td>H-L</td>
<td>L-HL</td>
<td>H-L</td>
<td></td>
</tr>
<tr>
<td>L-L</td>
<td>L-HL</td>
<td>H-L</td>
<td></td>
</tr>
<tr>
<td>L-H</td>
<td>L-HL</td>
<td>H-L</td>
<td></td>
</tr>
</tbody>
</table>
As Gralow (1985:3) puts it: “...we found that in certain frames there were four contrasting sets, but in isolation phrase stress completely neutralized the contrasts, at least in CVCV nouns.” (44) shows that CVV noun tones also merge except for /LL/ nouns, which remain distinct under statement intonation. It would appear that the statement and question intonemes are LHL% and HL%, respectively, although more information would be needed to confirm this.

It is more usual that a subset of tone patterns merge in citation forms. Several Grassfields Bantu languages show this property. Like Oku, in closely related Babanki, most bisyllabic nouns show one of two tone patterns in isolation, L-L and L-H, where the first syllable is a (surface) L tone prefix. As in Oku, we expect four tone patterns on the stem syllable: H, L, HL, and LH. Whereas Oku groups these as H, LH vs. L, HL, i.e. two groups of two, Babanki groups them as L vs. H, HL, and LH (Hyman 1979a). The same is true in Aghem, where /H-L/ is realized H-HL, but the other bisyllabic tone pattern, H-H, represents a neutralization of /H-H/, /H-HL/ and /H-LH/ (Hyman 1979b). In both languages, the four contrasting underlying tones are established on the basis of alternations, particularly in the N₁ of N₂ construction.

There are in fact two ways in which citation forms can diverge in context. The first is that they have different effects on neighboring tones. The second is that neighboring tones have a different effect on them. (Both may of course obtain in the same language.) A case of the former comes from Peñoles Mixtec, where the two groups of nouns in (45) are both pronounced with a gradually falling pitch throughout, which Daly & Hyman (2007) analyze as toneless:

(45). a. kiti ‘animal’ nduʔu ‘tree trunk’
 kolo ‘male turkey’ nduu ‘day’

 b. njuši ‘chicken’ doko ‘well’
 tiši ‘mouse’ kada ‘son-in-law’

While the two sets are both analyzed as being underlyingly toneless, taking their pitches from context, they have a different effect on the next word. As seen in the representative examples in (46), the word /ditó/ ‘uncle’, analyzed as underlying /Ø-H/, has different realizations after each group:

(46) a. kiti ditó ‘uncle’s animal’
 b. njuši ditó ‘uncle’s chicken’

In (46a) /kiti/ ‘animal’ has no effect on /ditó/ ‘uncle’, and the two-word sequence is pronounced as a sequence of four M pitches, conforming with the pitch realization rules described by Daly & Hyman. On the other hand, the njuši ‘chicken’, pronounced identically with kiti in isolation, causes the first syllable of /ditó/ to begin with a distinctive L pitch. The result is a sequence of three falling L pitches followed by a final M pitch. The analysis proposed by Daly & Hyman is that the nouns in (45b) are toneless, like those in (45a), but have a floating L tone after them, hence: /njuši/’, /doko’/, /tiši’/, /kada’/. It is this floating L which links to the first syllable of /ditó/ ‘uncle’ in (46b).

The second situation is where two identical citation forms are themselves realized differently in context. A good case of this comes from Villa Alta Yatzachi Zapotec (Pike 1948). In this languages there are two kinds of L tone nouns: those which remain L in context vs. those which become M when followed by a M or H tone. A minimal pair is seen in (47).
Both *bìa* ‘cactus’ and *bìa* ‘animal’ are pronounced L in isolation. However, when followed by *gōlı* ‘old’, ‘cactus’ remains L, while ‘animal’ becomes M. In this case a number of different analyses might be proposed (see Hyman 2009). One would be to give different features to the two types of L tone, perhaps treating those like ‘animal’ as having a fourth “lower-mid” pitch level (as they undoubtedly did, historically). Another would be a floating tone analysis: ‘animal’ may have a floating M after it. This time, however, the floating tone would not link to the following word, but rather to its own morpheme.

In both Peñoles Mixtec and Villa Alta Yatzachi Zapotec the different realizations of identical citation forms are discovered from their interaction with specific surrounding tones. There would be no differences between (45a,b) and (47a,b) if, for example, the words in question were followed by another word beginning with /L/. Another possibility is that two underlying tone patterns merge when they are adjacent to a phrase boundary, especially pause. For example, both of the Kinande nouns in (48a) are pronounced L-L-H-L in isolation (Hyman 1990:117):

(48) a. è-ki-tábù ‘book’ b. è-ki-tábù ki-riţo ‘heavy book’
è-ki-ryátù ‘shoe’ è-ki-ryátù ki-riţo ‘heavy shoe’

When followed by the adjective ‘heavy’ in (48b), however, ‘book’ keeps the same tones, while ‘shoe’ is realized all L. The reason for the neutralization in (48a) is that there is a succession of two boundary tones H%L//, where H% marks the end of a phrase and L// the end of a declarative utterance. Since ‘shoe’ is underlyingly toneless, the two boundary tones map to the last two syllables. The underlying final /H-L/ tones of ‘book’, however, block the mapping of H% with L// linking vacuously to the final syllable.

While it is more common for the phrase-final position to alter and/or merge tones, the same can happen phrase-initially. A case in point comes from Hakha Lai (Hyman & VanBik 2005). As seen in (49) words, which are typically monosyllabic, can be either HL or L in isolation:

(49) a. (HL) b. (HL) c. (L)
hmâa ‘wound’ kêe ‘leg’ sàa ‘animal’
lûŋ ‘heart’ hrôm ‘throat’ râŋ ‘horse’
râal ‘enemy’ kôoy ‘friend’ kôom ‘corn’

However, as indicated, the HL words fall into two classes. As seen in (50), the group in (49a) remains HL after toneless pronominal proclitics such as *ka* ‘my’, while the group in (49b) is realized LH:

(50) a. /HL/ b. /LH/ c. /L/
ka hmâa ‘my wound’ ka kêe ‘my leg’ ka sàa ‘my animal’
ka lûŋ ‘my heart’ ka hrôm ‘my throat’ ka râŋ ‘my horse’
ka râal ‘my enemy’ ka kôoy ‘my friend’ ka kôom ‘my corn’

As seen in (50c), the nouns in (49c) remain L. Since there is a contrast after such proclitics, we analyze the first two groups as /HL/ and /LH/, respectively. In order to get the LH to become HL,
we assume an initial %H boundary tone: A /LH/ tone becomes HL after a H. Support from this is seen in (51), where a /LH/ is shown to become HL also after another /LH/:

\[(51) \quad /\text{ka} + \text{kooy} + \text{kee}/ \quad \rightarrow \quad \text{ka kōoy kēe} \quad \text{‘my friend’s leg’} \]

\[\begin{array}{ccc}
 \text{LH} & & \text{LH} \\
\end{array}\]

In the cases considered thus far there is a two-to-one relation between tones in context vs. tones in isolation: We get the information we need to set up distinct underlying tone patterns by relying on the contextualized tones. It should however be noted that the relation between citation and contextual tones can be considerably more complex (and varied). Thus consider the following data from Haya (Hyman & Byarushengo 1984):

\[(52) \quad \begin{array}{ccc}
 \text{‘farmer’} & \text{‘woman’} & \text{‘snuff’} \\
 \text{as subject: } & \text{ò-mù-limi} & \text{ò-mù-kázi} & \text{ò-bù-goló} \\
 \text{citation form: } & \text{ò-mù-limi} & \text{ò-mù-kázi} & \text{ò-bù-goló} \\
 \text{‘... my’} & \text{ò-mù-limi wàngê} & \text{ò-mù-kázi wàngê} & \text{ò-bù-goló bwàngê} \\
 \text{‘... of Kato’} & \text{ò-mù-limi wà kátò} & \text{ò-mù-kázi wà kátò} & \text{ò-bù-goló bwà kátò} \\
\end{array}\]

Hyman and Byarushengo analyze the Haya tone system as privative /H/ vs. Ø. The first row not only presents the forms as pronounced as subject of a sentence, but is most direct in establishing the underlying tones of the noun stems, /-limi/, /-kázi/, /-goló/, where toneless vowels receive L tone by default. As seen in the schemas in (53), something happens to these underlying stem forms in the other three contexts:

\[(53) \quad \begin{array}{ccc}
 /\text{Ø-Ø}/ & /\text{H-Ø}/ & /\text{Ø-H}/ \\
 \text{as subject: } & \text{L-L} & \text{H-L} & \text{L-H} \\
 \text{citation form: } & \text{L-L} & \text{HL-L} & \text{H-L} \\
 \text{‘... my’} & \text{L-H} & \text{H-L} & \text{L-H} \\
 \text{‘... of Kato’} & \text{L-L} & \text{L-L} & \text{L-L} \\
\end{array}\]

As seen, the citation forms do not merge the three stem-tone patterns, but these latter are realized differently: /H-Ø/ is realized HL-L and /Ø-H/ is realized H-L. When modified by the possessive pronoun ‘my’, /Ø-Ø/ becomes L-H, merging with /Ø-H/. Finally, all three patterns merge as Ø-Ø (\(\rightarrow\) L-L) by a process of H tone deletion as the N₁ of a N₁ of N₂ construction.

What emerges from the Haya example is that tones can merge not only in citation forms, but also in context. The data in (52) further establish Pike’s (1948) insistence on discovering the proper frame for determining tonal contrasts. One such frame in Haya would be subject position. However, as stated earlier, one cannot know in advance whether there are tonal alternations in phrasal contexts, and if so, which among the various contexts might provide the best frame for establishing the underlying tonal representations and the rules that account for alternations. By ordering the operations into Stages I, II and III, one has the best chance of discovering the crucial facts and arriving at an optimal solution.

References
Bateman, Janet. 1990. Iau segmental and tonal phonology. Miscellaneous Studies of Indonesian and Other Languages in Indonesia 10.29-42.

