Segmental Strength: A Typology of Unstable Segments

Eva Zimmermann
Special Session 'Inside Segments'
LSA 2019, New York
January 06, 2019

Main Claim

* Ghost segments are weakly active segments and thus

1. both phonological and lexical factors can contribute to the (non)realization of a ghost segment (\rightarrow Catalan).
2. ghost segments can only gradiently contribute to markedness if they surface. (\rightarrow Nuu-chah-nulth).
3. different types of ghost segments exist and can coexist in one language $(\rightarrow$ Welsh).

Gradient Representations: Assumptions

Background: Gradient Symbolic Representation (=GSR)

* All linguistic symbols have activity that can gradiently differ with $1=$ fully active. (Smolensky and Goldrick, 2016; Rosen, 2016)
* Any change in activity is a faithfulness violation - different activities result in gradient violations of faithfulness.
* Elements can be weakly active in the output and thus violate markedness gradiently. (Zimmermann, 2017a,b; Faust and Smolensky, 2017)
* Grammatical computation modeled inside Harmonic Grammar where constraints are weighted. (Legendre et al., 1990; Potts et al., 2010)

GSR: Gradient Constraint Violations

*Weakly active segments:

- they are easier to delete than 'normal' segments (=MAx-S violated to a lesser degree)
- it is costly to realize them (=activity inserted (1-a) or weak activity in the output (1-b+c))
- they violate/satisfy markedness constraints to a lesser degree
(1) Gradient Activity=gradient constraint violations

$\mathrm{b}_{1} \mathrm{a}_{1} \mathrm{t}_{1}-\mathrm{p}_{0.5}$	FULL 10	MAX-S 10	DEP-S 10	${ }^{*} \mathrm{CC}$ 10	
$\mathrm{a} . \mathrm{b}_{1} \mathrm{a}_{1} \mathrm{t}_{1} \mathrm{p}_{1}$			$-\mathbf{0 . 5}$	$-\mathbf{1}$	-15
b. $\mathrm{b}_{1} \mathrm{a}_{1} \mathrm{t}_{1} \mathrm{p}_{0.5}$	$-\mathbf{0 . 5}$			$-\mathbf{0 . 7 5}$	-12.5
c. $\mathrm{b}_{1} \mathrm{a}_{1} \mathrm{p}_{0.5}$	-0.5	$\mathbf{- 1}$			-15
d. $\mathrm{b}_{1} \mathrm{a}_{1} \mathrm{t}_{1}$		$\mathbf{- 0 . 5}$			-5

Only fully active S
Faithful realization of weak S
Deletion of fully active S
Deletion of weakly active S
(2) FULL: Assign violation 1-X for every output element with activity X .

Ghost segments: Three case studies

Ghost segments \sim

(3) 'Segments that only surface in certain contexts.' (Yang, 2004, 71) (Archangeli, 1984; Hyman, 1985; Rubach, 1986; Kenstowicz and Rubach, 1987; Szypra, 1992; Yearley, 1995; Tranel, 1995, 1996; Zoll, 1996)
(4)

Phonological context 1:	pan~/ pan Phonological context 2:	/tump/ tump pank-u
tump-u		

Ghost segments \perp

(3) 'Segments that only surface in certain contexts.' (Yang, 2004, 71) (Archangeli, 1984; Hyman, 1985; Rubach, 1986; Kenstowicz and Rubach, 1987; Szypra, 1992; Yearley, 1995; Tranel, 1995, 1996; Zoll, 1996)
(4)

Phonological context 1:	pan~/ pan phonological context 2:	/tump/ tump pank-u
tump-u		

\rightarrow GSR: Ghost segments are underlyingly weak segments
为 weak activity is a lexical property of certain segments inside certain morphemes

* their activity might be too low to be realized without further 'support'

1. Relevance of Lexical and Phonological factors: Catalan

(5)

	Sc	PL	
a.	gót	góts	'glass(es)' (masc.)
	tákə	tákəs	'stain(s)' (fem.)
b.	pás	pásus	'step(s)' (masc.)
	grás	grásus	'fat' (masc.)
c.	mosu	mosus	'lad' (cf. fem. /mos[ə $] /$)
	monju	monjus	'monk/nun' (cf. fem. /monj[ə]/)

(Fabra, 1990; Wheeler, 1999; Hualde, 2002; Bonet et al., 2007)

* sibilant-final masc. N's show /u/ (\neq epen. /ə/) before plural-/s/ (6-b)
\rightarrow ghost V avoids a marked structure / * SibSib/

1. Relevance of Lexical and Phonological factors: Catalan

(5)

	SG	PL	
a.	gót	góts	'glass(es)' (masc.)
	tákə	tákəs	'stain(s)' (fem.)
b.	pás	pásus	'step(s)' (masc.)
	grás	grásus	'fat' (masc.)
c.	mosu	mosus	'lad' (cf. fem. /mos[ə $/$ /)
	monju	monjus	'monk/nun' (cf. fem. /monj[ə]/)

(Fabra, 1990; Wheeler, 1999; Hualde, 2002; Bonet et al., 2007)
** sibilant-final masc. N’s show /u/ (\neq epen. /ə/) before plural-/s/ (6-b)
\rightarrow ghost V avoids a marked structure / * SibSib/

* other N's always show /u/ (6-c)
\rightarrow same ghost V is lexically determined

1. Catalan Ghost segments: GSR Account

(6) $/-u_{\Omega} /$ unrealized without further support: $\mathbf{0 . 5 x D E P}-V \gg \mathbf{0 . 5 x M A x}-V$

$\mathrm{g}_{1}{ }_{1} \mathrm{t}_{1}-\mathrm{u}_{0.5}-\mathrm{s}_{1}$	MAX-C 50	*SS 40	FULL! 30	DEP-V 26	MAX-V 20	INT-V 5	
b. $\mathrm{g}_{1} \mathrm{~J}_{1} \mathrm{t}_{1} \mathrm{~s}_{1}$					-0.5		-10
c. $\mathrm{g}_{1} \mathrm{o}_{1} \mathrm{t}_{1} \mathrm{u}_{1} \mathrm{~s}_{1}$				-0.5			-13

1. Catalan Ghost segments: GSR Account

(6) $/-u_{\cap} /$ unrealized without further support: $\mathbf{0 . 5 x D E P}-V \gg \mathbf{0 . 5 x M A X}-V$

$\mathrm{g}_{1}{ }_{1} \mathrm{t}_{1}-\mathrm{u}_{0.5}-\mathrm{s}_{1}$	MAX-C 50	*SS 40	FULL! 30	DEP-V 26	MAX-V 20	INT-V 5	
b. $\mathrm{g}_{1} \mathrm{~J}_{1} \mathrm{t}_{1} \mathrm{~s}_{1}$					-0.5		-10
c. $\mathrm{g}_{1} \mathrm{o}_{1} \mathrm{t}_{1} \mathrm{u}_{1} \mathrm{~s}_{1}$				-0.5			-13

(7) $\quad /-u_{\AA} /$ realized if markedness avoided: *ss $\mathbf{+ 0 . 5 x M A x - V} \gg \mathbf{0 . 5 x D e p}-V$

$\mathrm{p}_{1} \mathrm{a}_{1} \mathrm{~s}_{1}-\mathrm{u}_{0.5}-\mathrm{s}_{1}$	Max-C 50	*SS 40	FuLL! 30	Dep-V 26	Max-V 20	Int-V 5	
b. $\mathrm{p}_{1} \mathrm{a}_{1} \mathrm{~s}_{1} \mathrm{~s}_{1}$		-1			-0.5		-50
$\mathrm{c} . \mathrm{p}_{1} \mathrm{a}_{1} \mathrm{~s}_{1} \mathrm{u}_{1} \mathrm{~s}_{1}$				-0.5			-13

1. Catalan Ghost segments: GSR Account

(6) $/-u_{\Omega} /$ unrealized without further support: $\mathbf{0 . 5 x D E P - V} \gg \mathbf{0 . 5 x M A x}-V$

$\mathrm{g}_{1} \partial_{1} \mathrm{t}_{1}-\mathrm{u}_{0.5}-\mathrm{s}_{1}$	MAX-C 50	*SS 40	FuLL! 30	DEP-V 26	MAX-V 20	INT-V 5	
b. $\mathrm{g}_{1} \partial_{1} \mathrm{t}_{1} \mathrm{~s}_{1}$					-0.5		-10
c. $\mathrm{g}_{1} \mathrm{O}_{1} \mathrm{t}_{1} \mathrm{u}_{1} \mathrm{~s}_{1}$				-0.5			-13

(7) $\quad /-u_{\AA} /$ realized if markedness avoided: *ss $\mathbf{+ 0 . 5 x M A x - V} \gg \mathbf{0 . 5 x D e p}-V$

$\mathrm{p}_{1} \mathrm{a}_{1} \mathrm{~s}_{1}-\mathrm{u}_{0.5}-\mathrm{s}_{1}$	Max-C 50	${ }^{*}$ SS 40	FuLL! 30	DEP-V 26	MAX-V 20	INT-V 5	
b. $\mathrm{p}_{1} \mathrm{a}_{1} \mathrm{~s}_{1} \mathrm{~s}_{1}$		-1			-0.5		-50
c. $\mathrm{p}_{1} \mathrm{a}_{1} \mathrm{~s}_{1} \mathrm{u}_{1} \mathrm{~s}_{1}$				-0.5			-13

(8) $/-u_{\mathcal{D}} /$ realized if it can coalesce with another $/-u_{\Omega} /$

$\mathrm{m}_{1} \mathrm{O}_{1} \mathrm{~s}_{1} \mathrm{u}_{0.5}^{\mathrm{a}}-\mathrm{u}_{0.5}^{\mathrm{b}}$	Max-C 50	$\begin{gathered} * \text { *SS } \\ 40 \end{gathered}$	$\begin{gathered} \text { Full! } \\ 30 \end{gathered}$	$\begin{gathered} \text { Dep-V } \\ 26 \\ \hline \end{gathered}$	Max-V 20	$\begin{gathered} \text { INT-V } \\ 5 \end{gathered}$	
a. $\mathrm{m}_{1} \mathrm{O}_{1} \mathrm{~s}_{1}$					-1		-20
(\%) b. $\mathrm{m}_{1} \mathrm{O}_{1} \mathrm{~s}_{1} \mathrm{u}_{1}^{\mathrm{a}, \mathrm{b}}$						-1	-5

2. Gradient Markedness: Nuuchahnulth

some suffix-initial C's only surface post-vocalically (Kim, 2003, 178)
(9) a. $\quad \mathrm{V}$

C_
\qquad
C_$k^{\text {w }}$ is-(k)ła:-k'uk-Rij

Patłaqum
ty'isums
Ruka:sif
k^{w} isła:k’uk?ij
'two dollars'
'sth. white and round'
'My name is Eun-Sook'
'It seems like he has a different name'

2. Gradient Markedness: Nuuchahnulth

** some suffix-initial C's only surface post-vocalically (Kim, 2003, 178)
(9) a. $\quad V_{-}$

C
b. V

C_$k^{\text {wis-(k) }}$)a:- ${ }^{\prime}{ }^{\prime} u k-? i j$

Patłaqum
ty'isums
Puka:sif
k^{w} isła:k'uk?ij It seems like he has a different name'

* a ghost C only surfaces if it does not create a marked structure:
- Avoidance of a coda for $/-\mathrm{C}_{\AA} \mathrm{V}(9-\mathrm{a}):{ }^{*} \mathrm{VC} . \mathrm{C}_{\AA} \mathrm{V}$
- Avoidance of a cluster for $-\mathrm{C}_{\mathrm{Q}_{\mathrm{a}}} \mathrm{CV}$ (9-b): *VCC $\mathrm{C}_{\mathfrak{Q}} . \mathrm{CV}$

2. Gradient Markedness: Nuuchahnulth

* some suffix-initial C's only surface post-vocalically (Kim, 2003, 178)
(9) a. V__ Patła-(q)umł

C__ t'is-(q)umt
b. V

C_
?u-(k)ła:-si \int Eun-Sook
k^{w} is-(k)ła:-k'uk-?if

Ratłaqum
ty'isums
?uka:sif
k^{W} isła:k'uk?if It seems like he has a different name'

* a ghost C only surfaces if it does not create a marked structure:
- Avoidance of a coda for $/-\mathrm{C}_{\AA} \mathrm{V}(9-\mathrm{a})$: $\mathrm{VC}_{\mathrm{V}} \mathrm{C}_{\AA} \mathrm{V}$
- Avoidance of a cluster for $-\mathrm{C}_{\mathrm{Q}_{\mathrm{a}}} \mathrm{CV}$ (9-b): *VCC $\mathrm{V}_{\mathfrak{Q}} . \mathrm{CV}$

But realization in (9-b) creates the marked structure (=Coda) that non-realization in (9-a) avoids!
\rightarrow a ranking paradox for OT emerges:
*Coda \gg Max for (9-a) but MAX ${ }^{2} \gg$ *Coda for (9-b)

2. Gradient Markedness: Nuuchahnulth

* some suffix-initial C's only surface post-vocalically (Kim, 2003, 178)
(9) a. V__ Patła-(q)umł

C__ t'is-(q)umt
b. V

C_ ?u-(k)ła:-sif Eun-Sook
k^{w} is-(k)ła:-k'uk-?if

Ratłaqum
t'i.sumt
Ruk. $\ddagger a: s i \int$
$k^{\text {w }}$ isła:k'uk?ij
'two dollars'
'sth. white and round'
'My name is Eun-Sook'
'It seems like he has a different name'

* a ghost C only surfaces if it does not create a marked structure:
- Avoidance of a coda for $/-\mathrm{C}_{\AA} \mathrm{V}(9-\mathrm{a}):{ }^{*} \mathrm{VC} . \mathrm{C}_{\AA} \mathrm{V}$
- Avoidance of a cluster for $-\mathrm{C}_{\mathbb{\Omega}} \mathrm{CV}$ (9-b): *VCC $\mathrm{V}_{\mathfrak{Q}} . \mathrm{CV}$

But realization in (9-b) creates the marked structure (=Coda) that non-realization in (9-a) avoids!
\rightarrow a ranking paradox for OT emerges:
*Coda \gg Max for (9-a) but MAX $\mathcal{D} \gg$ *Coda for (9-b)

2. Nuuchahnulth Ghost segments: GSR Account

(10) $\quad /-\mathrm{C}_{\AA} \mathrm{V} /:_{\mathrm{C}_{\AA}}$ not realized after a $\mathrm{C}\left(=\mathrm{C}_{\AA}\right.$ forces C into coda position)

$\mathrm{t}_{1} \mathrm{i}_{1} \mathrm{~s}_{1}-\mathrm{q}_{0.5} \mathrm{u}_{1}$	Max-S 20	FuLL 12	CC 10	*CodA 7	
a. $\mathrm{t}_{1} \mathrm{i}_{1} \mathrm{~s}_{1} \cdot \mathrm{q}_{0.5} \mathrm{u}_{1}$		-0.5	-1	-1	-30
b. $\mathrm{t}_{1} \mathrm{i}_{1} . \mathrm{s}_{1} \mathrm{u}_{1}$	-0.5		-1		-27

$0.5 x$ Full! + *Coda $\gg 0.5 x$ MAx-S
(11) $\quad /-\mathrm{C}_{\Omega} \mathrm{CV} /$: $_{\Omega}$ realized after a $\mathrm{V}\left(=\mathrm{C}_{\Omega}\right.$ is itself in coda position)

$\mathrm{P}_{1} \mathrm{u}_{1}-\mathrm{k}_{0.5} \mathrm{t}_{1} \mathrm{a}_{1}$	Max-S 20	FuLL! 12	*CC 10	${ }^{*}$ CodA 7	
a. $\quad \mathrm{P}_{1} \mathrm{u}_{1} \mathrm{k}_{0.5} \cdot \mathrm{f}_{1} \mathrm{a}_{1}$		-0.5		$-\mathbf{0 . 5}$	-9.5
b. $\mathrm{P}_{1} \mathrm{u}_{1} \cdot \mathrm{q}_{1} \mathrm{a}_{1}$	-0.5				-10

$0.5 x$ Max-S $\gg \mathbf{0 . 5 x F u l l}!+\mathbf{0 . 5 x}$ * CodA

3. Different ghost segments within one language: Welsh

* some C's only surface before a vowel (12-a)
* definite marker alternates: /yr/ (_ V $)$, /y/ (_ C $)$, /'r/ (V
(12) a. gudag eraill 'with others'
guda gwên 'with a smile'
b. yr afon 'the river' yr (=ər) _ V
y llyfr 'the book'
y (=ə) __C
o'r afon 'from the river'
o'r llyfr 'from the book'
c. guda'r nod 'with the aim' (*gudag y nod)
(Hannahs and Tallerman, 2006)
* combination of both shows different default states for ghost C's:
- $/ \mathbf{g}_{\mathbb{1}} /$ only realized if it does not avoid a hiatus (='appearing ghost')
- $/ y_{\text {® }} \mathbf{r a}_{\text {d }}$ only deleted if they create a hiatus/coda (='disappearing ghosts’)

3. Welsh Ghost segments: GSR Account

* different realization thresholds:
- $\mathrm{g}_{0.2}$ is never realized unless it avoids a *HıAT violation
- yo.6 $\mathbf{r}_{0.6}$ are always realized unless they create a *HIAT/*CodA violation

$\mathrm{g}_{1} \mathrm{u}_{1} \mathrm{~d}_{1} \mathrm{a}_{1} \mathrm{~g}_{0.2} \mathrm{Y}_{0.6} \mathrm{r}_{0.6} \mathrm{C}_{1} \mathrm{~V}_{1} \ldots$	$\begin{gathered} \mathrm{RM} \\ 100 \end{gathered}$	MAx-S 10	Dep-S 10	$\begin{gathered} *[\mathrm{CC} \\ 8 \end{gathered}$	$\begin{gathered} \text { *HIAT } \\ 7 \\ \hline \end{gathered}$	*CodA 5	
a. $\mathrm{g}_{1} \mathrm{u} \cdot{ }_{1} \mathrm{~d}_{1} \mathrm{a}_{1} \cdot \mathrm{~g}_{1} \mathrm{y}_{1} \mathrm{r}_{1} \cdot \mathrm{C}_{1} \mathrm{~V}_{1}$			-1.6			-1	-21
b. $\quad g_{1} u_{\cdot 1} d_{1} a_{1} \cdot y_{1} r_{1} \cdot C_{1} V_{1}$		-0.2	-0.8		-1	-1	-22
		-0.8	-0.4			-1	-17
d. $g_{1} u_{\cdot 1} d_{1} \mathrm{a}_{1} \cdot \mathrm{~g}_{1} \mathrm{y}_{1} \cdot \mathrm{C}_{1} \mathrm{~V}_{1}$		-0.6	-1.2				-18

* vs. (13-d): / $g_{0.2} /$ is never realized to avoid a *CodA violation ($0.8 \times$ DEP-S \gg *CODA)
* vs. (13-a):/g $0_{0.2} /$'s default state is to not be realized ($0.8 \times$ Dep-S $\gg 0.2 \times$ MAx-S $)$

Discussion

Discussion

* the GSR assumption that segments differ in their underlying presence allows to account for the typology of ghost segments
* in contrast to accounts where weakness is autosegmental defectivity: (e.g. Spencer, 1986; Szypra, 1992; Tranel, 1995, 1996; Faust, 2013)
- it predicts gradient markedness (cf. Nuu-chah-nulth)
- it predicts true gradience (cf. Welsh)
* future research: Weakness in the output predicts phonetic effects that correlate with phonological weakness (=possible but not necessary!)

References

Archangeli, Diana (1984), Underspecification in Yawelmani Phonology and Morphology, PhD thesis, MIT.

Bonet, Eulàlia, Maria-Rosa Lloret and Joan Mascaró (2007), 'Allomorph selection and lexical preferences: Two case studies', Lingua 117(6), 903-927.
Fabra, Pompeu (1990), Gramàtica catalana, Teide, Barcelona.
Faust, Noam (2013), 'Decomposing the feminine suffixes of Modern Hebrew', Morphology 23, 409-440.
Faust, Noam and Paul Smolensky (2017), 'Activity as an alternative to autosegmental association', talk given at mfm 25, 27th May, 2017.
Hannahs, S. J. and Maggie Tallerman (2006), 'At the interface: selection of the Welsh definite article', Linguistics 44, 781-816.
Hualde, José Ignacio (2002), Catalan, Routledge, New York.
Hyman, Larry (1985), A theory of phonological weight, Foris Publications, Dordrecht.
Kenstowicz, Michael and Jerzy Rubach (1987), 'The phonology of syllabic nuclei in Slovak', Language 63, 463-497.
Kim, Eun-Sook (2003), Theoretical issues in Nuu-chah-nulth phonology and morphology (British Columbia), PhD thesis, University of British Columbia.
Legendre, Geraldine, Yoshiro Miyata and Paul Smolensky (1990), 'Harmonic grammar - a formal multi-level connectionist theory of linguistic well-formedness: Theoretical foundations', Proceedings of the 12th annual conference of the cognitive science society pp. 388-395.
Potts, Christopher, Joe Pater, Karen Jesney, Rajesh Bhatt and Michael Becker (2010), ‘Harmonic grammar with linear programming: From linear systems to linguistic typology', Phonology pp. 77-117.

Rosen, Eric (2016), Predicting the unpredictable: Capturing the apparent semi-regularity of rendaku voicing in Japanese through Harmonic Grammar, in E.Clem, V.Dawson, A.Shen, A. H.Skilton, G.Bacon, A.Cheng and E. H.Maier, eds, 'Proceedings of BLS 42', Berkeley Linguistic Society, Berkeley, pp. 235-249.
Rubach, Jerzy (1986), 'Abstract vowels in three-dimensional phonology: The yers', The Linguistic Review 5, 247-280.
Smolensky, Paul and Matthew Goldrick (2016), 'Gradient symbolic representations in grammar: The case of French liaison', Ms, Johns Hopkins University and Northwestern University, ROA 1286.
Spencer, Andrew (1986), 'A non-linear analysis of vowel-zero alternations in Polish’, Journal of Linguistics 22, 249-280.

Szypra, Jolanta (1992), 'Ghost segments in nonlinear phonology: Polish yers', Langage pp. 277-312.
Tranel, Bernard (1995), The representation of French final consonants and related issues, in J.Amastae, G.Goodall, M.Phinney and M.Montalbetti, eds, 'Contemporary Research in Romance Linguistics: Papers from the XXII Linguistic Symposium on Romance Languages'.
Tranel, Bernard (1996), Exceptionality in optimality theory and final consonants in French, in K.Zagona, ed., 'Grammatical Theory and Romance Languages: Selected papers from the 25th Linguistic Symposium on Romance Languages (LSRL XXV)', John Benjamins, Amsterdam, pp. 275-291.
Wheeler, Max (1999), Catalan: a comprehensive grammar, Routledge, London. Includes index. URL: http://swbplus.bsz-bw.de/bsz075012650inh.htm
Yang, So-Young (2004), 'Latent segments in the English indefinite article', Language and Information Society pp. 68-83.
Yearley, Jennifer (1995), Jer vowels in Russian, in J.Beckman, L.Walsh Dickey and S.Urbanczyk, eds, 'Papers in Optimality Theory', GLSA Publications, Amherst, Mass., pp. 533-571.

Zimmermann, Eva (2017a), 'Being exceptional is being weak: tonal exceptions in San Miguel el Grande Mixtec', poster, presented at AMP 2017, New York, September 16, 2017.
Zimmermann, Eva (2017b), 'Gradient symbols and gradient markedness: a case study from Mixtec tones', talk, given at the 25th mfm, 27th May, 2017.
Zoll, Cheryl (1996), Parsing below the segment in a constraint-based framework, PhD thesis, UC Berkeley.

Eva.Zimmermann@uni-leipzig.de

