Ling 211B: Topics in Phonological Theory
Topic: Phonological variation
Fall 2017
Brian W. Smith

LOGISTICS

Course website: on bcourses
Brian's e-mail: bwsmith@berkeley.edu
Office hours: Mo 1:00PM–2:00PM, We 11:00AM–12:00PM (and open door policy)
Time/place: TuTh 2:00PM–3:30PM @ Dwinelle 1303

We meet on the following dates:

<table>
<thead>
<tr>
<th>Week</th>
<th>W00</th>
<th>W01</th>
<th>W02</th>
<th>W03</th>
<th>W04</th>
<th>W05</th>
<th>W06</th>
<th>W07</th>
<th>W08</th>
<th>W09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue</td>
<td>—</td>
<td>8/29</td>
<td>9/5</td>
<td>9/12</td>
<td>9/19</td>
<td>9/26</td>
<td>10/3</td>
<td>10/10</td>
<td>10/17</td>
<td>10/24</td>
</tr>
<tr>
<td>Thurs</td>
<td>8/24</td>
<td>8/31</td>
<td>9/7</td>
<td>9/14</td>
<td>9/21</td>
<td>9/28</td>
<td>10/5</td>
<td>10/12</td>
<td>10/19</td>
<td>10/26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week</th>
<th>W10</th>
<th>W11</th>
<th>W12</th>
<th>W13</th>
<th>W14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue</td>
<td>10/31</td>
<td>11/7</td>
<td>11/14</td>
<td>11/21</td>
<td>11/27</td>
</tr>
<tr>
<td>Thurs</td>
<td>11/2</td>
<td>11/9</td>
<td>11/16</td>
<td>—</td>
<td>11/29 ←presentations</td>
</tr>
</tbody>
</table>

DESCRIPTION

Phonological data is subject to variation, both within and across speakers and lexical items. Relatively recently, phonologists have worked on developing theories for the treatment of variation, extending OT-like models to new cases of non-categorical data from corpora and experiments.¹ This seminar addresses ‘free’ variation and lexical variation in phonology (and a little bit in morphosyntax), with an emphasis on building and comparing grammatical models.

¹ At the 2016 Annual Meeting of Phonology, 58% of the talks presented variation data, 32% presented a grammar model of variation, 37% used corpus data, and 37% included a human experiment (AMP numbers courtesy of Kie Zuraw).
We’ll focus on the advantages of constraint-based models of variation:

1. They make explicit (and implicit) connections to models used in statistics and sociolinguistics. We’ll discuss, for example, how MaxEnt Grammar relates to Logistic Regression and VarbRul.
2. They make explicit predictions about data: both in terms of general patterns and in terms of quantifiable model fit. We’ll discuss various ways to evaluate and compare models, including statistical tests and cross-validation (using holdout/test data).
3. They gracefully handle ‘real’ data, complete with exceptions and noise. We’ll discuss and practice using raw corpus and experimental data to fit our models, and read many papers with both.
4. They’re compatible with robust learning algorithms, with many software implementations. We’ll run through a number of learning algorithms both by hand and using software.

COURSE GOALS

(1) characterize the range of factors that influence phonological variation
(2) compare models of phonological variation and their learning algorithms
(3) gain hands-on experience with related software

REQUIREMENTS

Enrolled?
— Attend class and do the readings. Let me know if you can’t make it to class.
— Complete about four practice data sets, most of which require using software tools (we’ll go over these tools in class in great detail)
— Present two or three papers during the semester (goal: 1 presentation/week)
 Papers that are marked as ‘optional’ are presentable, along with any other paper that’s relevant
— Write a final paper, which takes a set of variable data and analyzes it in at least two models that we discussed. Evaluate the models using quantitative model fit or hold-out data. If a particular model does better on the data, characterize the source of the difference. (You can use your own personal data for this, or existing data from the phonology/phonetics/sociolinguistics literature)
— Present your final paper in class (15-20 minute presentation)

Sitting in?
— Feel free to attend even if you haven’t done the readings
— Consider presenting a paper or related original research
— Attempt the problem sets (these are the most useful part)
SCHEDULE

Weeks 0–1: Overview and review
Coetzee & Pater (2011) provide an overview of phonological variation and its models
OT review: ranking arguments, comparative tableaux, and learning algorithms

Weeks 1–3: Partially ordered constraints
Anttila (1997) defines a model of free variation using partial rankings (=POC)
Boersma (2000) summarizes Anttila’s dissertation and raises some issues
Anttila et al. (2008) use POC to model variation in Singaporean English
Optional: Côté (2007) uses Antila's model for another case of variation from French
Optional: Kiparsky (1994) sketches an OT model of variation, expanded on by Anttila

Weeks 3–4: Stochastic OT and the GLA
Boersma & Hayes (2001) propose a learning algorithm for Stochastic OT: the GLA
Pater (2008) shows a case that breaks the GLA
Albright & Hayes (2006) use the GLA to deal with induced ‘junk’ constraints
Optional: Boersma & Levelt (2000) model acquisition of syllable structure using the GLA
Optional: Magri (2011) provides a fix for the problem identified in Pater (2008)
Optional: Jarosz (2010) expands on Boersma & Levelt, taking frequency into account

Weeks 4–5: (Noisy) Harmonic Grammar
Pater (2016) provides an overview of Harmonic Grammar
Walker (2017) provides further comparison of HG and Local Conjunction
Pater & Boersma (2016) show how the GLA can be adapted for Noisy HG
Optional: Kawahara (2006) uses HG to model cumulativity in Japanese
Optional: Hayes (to appear) considers different formulations of noise in Noisy HG

Week 6: Maximum Entropy Grammar (and model comparison)
Goldwater & Johnson (2003) show how MaxEnt can be used to Anttila’s (1997) data
Hayes, Wilson, & Shisko (2012) use MaxEnt for metrics and compare models
Optional: Shih (2017) uses conjoined constraints in MaxEnt as interaction terms

Week 7: Other models (and local optionality)
Hilpert (2007) uses logistic regression, and also illustrates the use of holdout data
Coetzee (2006) proposes a model in which variation comes from ranking losers
Kaplan (2012) proposes markedness suppression, using data with local optionality
Optional: Kaplan (2016) reanalyses the data from his 2012 paper using POC
Optional: Johnson (2009) shows how Varbrul relates to logistic regression
Optional: Benor & Levy (2006) use logistic regression for English binomial ordering
Optional: Shih & Zuraw (to appear) use logistic regression for Tagalog ordering
Week 8: Ganging and cumulativity in MaxEnt vs. StOT

Smith & Pater (2017/ms) compare MaxEnt, StOT, and HG with respect to ganging
Zuraw & Hayes (to appear) compare MaxEnt, StOT, and HG
Optional: Irvine & Dredze (2017/ms) do the same, but for syntactic variation in Czech
Optional: Jaeger & Rosenbach (2008), cited and discussed by the papers above

Week 9. Frequency and ‘performance’

Tily and Kuperman (2012) illustrate frequency effects in Dutch epenthesis
Coetzee & Kawahara (2013) model frequency effects using constraint scaling in HG
Optional: Smith & Moore-Cantwell (to appear) model frequency effects in MaxEnt

Weeks 10–11. Phonotactics and naturalness

Hayes & Wilson (2008) propose a MaxEnt model of phonotactics
Hayes & White (2013) test machine-learned phonotactics with real speakers
Martin (2011) shows how phonotactics can affect other parts of the grammar
Optional: Smith (ms) similarly argues that speakers extend phonotactics to new suffixes
Optional: Kager & Pater (2012) identify a phonotactic speakers know but isn’t machine-learned

Weeks 12–14: The law of frequency matching and lexical variation

Ernestus & Baayen (2003) show frequency matching for final devoicing in Dutch
Hayes et al. (2009) model frequency matching in Hungarian in MaxEnt
Zuraw (2010) models frequency matching in Tagalog in Stochastic OT
Becker et al. (2011) model frequency matching (and non-matching) in Turkish
Becker and Gouskova (2016) use multiple phonotactic grammars for Russian yers
Pater et al. (2012) present a learning model for lexical variation in MaxEnt