
Modeling Methods and Artifacts for
Crossing the Data/Document Divide
Keywords: Document Engineering, Modeling, Document Analysis, Data
Modeling

Robert Glushko
Center for Document Engineering
School of Information Management and Systems
University of California, Berkeley

Abstract

Many people have contrasted narrative types of documents that mostly contain
text with transactional types that mostly contain data, and they typically
conclude that documents and data require different terminology, techniques,
and tools in XML vocabulary development. But narrative and transactional
documents are often closely related, either by structural transformation or by
business processes. The emerging discipline of Document Engineering
proposes a document-centric reformulation of traditional data analysis, and
recasts its formal and specialized methods like normalization to apply equally
to narrative style documents. At the same time it takes the best practices of
document analysis and applies them to understanding information components
identified in transactional contexts.

Table of Contents

1. Introduction
 1.1 Overview of Document Analysis
 1.2 Overview of Data Analysis

Page 1 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

 1.3 The Document Type Spectrum
 1.4 Unification in Document Engineering
2. Setting the Stage to Compare and Synthesize Document Analysis and
Data Analysis
3. Harvesting Components
4. Consolidating Components
5. Assembling Component Models
6. Assembling Document Models
7. Summary
Bibliography

1. Introduction
The design, implementation, and successful deployment of a document-centric
application or service involve many interrelated activities, most of which
involve models of documents and the processes that use them. The first step is
usually a requirements gathering and scoping phase that defines the context
for the project. For strategic projects, this context is often defined by coarse
goal-oriented process statements or models. For tactical projects, the context
is often defined in terms of specific types of documents that must be
automated or integrated. The bulk of the work involves the creation of
conceptual models of the documents and processes at compatible levels of
abstraction to ensure that the documents can be used by the processes. One of
the last steps of the overall effort is using the document and process models in
application or user interfaces, for generating code, or for configuring an
application.

Our focus in this paper is on the central tasks of creating the document
models. We propose an approach that resolves an apparent conflict between
models of narrative documents and models of transactional ones.

Many people have contrasted narrative types of documents that mostly contain
text with transactional types that mostly contain data, and they typically
conclude that documents and data cannot be understood and handled with the
same terminology, techniques, and tools. For example, with narrative
documents, such as those that are traditionally called publications and
intended for use by people, analysis and modeling techniques are usually
described as "Document Analysis."

Page 2 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

In contrast, transactional documents are optimized for use by business
applications and differ in other substantial ways from traditional user-oriented
publications. The analysis and design methods used for transactional
documents are often described as "Data Analysis" or "Object Analysis."

1.1 Overview of Document Analysis

Document analysis emphasizes the study of narrative style documents as
artifacts because of the complex ways in which they merge presentation with
structural and content components. Making sense of this complexity requires a
wide range of document analysis techniques developed by publishing, text
processing, information architecture, and graphic design experts.

Eve Maler and Jeanne El Andaloussi's Developing SGML DTDs: From Text
to Model to Markup [Maler1995] is the definitive treatise on document
analysis with SGML for technical publications and other published types of
documents. Published in 1995, this book was the first to systematize the
evolving best practices for using SGML as an encoding syntax for models of
document types. The book's subtitle elegantly summarizes the goals of
classical document analysis: to analyze a set of texts, create a conceptual
model of their information components, and then encode the model in a
markup syntax like SGML or XML.

More specifically, document analysis is typically carried out with the goal of
separating a specification of a document's content and structure from its
presentational characteristics such as fonts, type sizes, and formatting used to
represent or highlight various structural or content distinctions.

Once this separation is accomplished, a model of the document is created,
usually called a document schema or document type. The optimal prescriptive
schema for a set of documents is one that best satisfies the requirements of
current and prospective users for carrying out specific tasks with new
instances.

Finally, one or more stylesheets can be used to assign formatting or rendering
characteristics in a consistent manner to any document that conforms to this
schema.

1.2 Overview of Data Analysis

Page 3 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

Data analysis has its roots in philosophy and linguistics, but it is most
currently understood as a set of techniques used for designing database
systems. It is primarily devoted to understanding and describing the properties
and relationships between information components or objects. The typical
goal of the data analyst is to define conceptual models that organize these
components efficiently to support a broad range of contexts or applications.
Because these information components are often stored as large structured sets
of data in databases, data analysis is a key step in database design. The
conceptual model created via data analysis methods is also typically called a
schema, but this is generally meant to be a "database schema" rather than a
"document schema," and it would never be called a "document type."

Data analysis methods, like those of document analysis, are bottom-up in the
sense that they are applied to existing artifacts. But in contrast to the
heterogeneous narrative artifacts for which document analysis techniques are
best suited, the more transactional artifacts to which data analysis methods
apply best are homogeneous. Transactional documents usually exist as a
limitless number of almost identical instances, often produced mechanically to
represent some state of an activity or business process. Such documents are
extremely regular in their structures and have strongly defined content
components, both of which facilitate the development of a conceptual model
that describes them. Furthermore, unlike narrative documents, transactional
documents typically contain minimal or arbitrary presentation features.

The stronger constraints in contexts that include transactional documents can
be formally specified and analyzed, and the principles and methods for doing
so were first developed as part of Codd's Relational Theory [Codd1970] for
the design of databases. In particular, the principle known as normalization
involves a set of techniques for modeling components and structures that
minimizes redundancy and supports integrity.

These techniques progressively refine and abstract information models by
identifying repeating or recurring structures, removing redundancies and
technology constraints, and otherwise creating a more concise and reusable
representation of the information components.

1.3 The Document Type Spectrum

Undeniably, documents and data differ in important ways, and these influence

Page 4 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

the techniques by which they are analyzed and by which models of them are
developed. But it is essential to view narrative and transactional information
on a continuum. Glushko and McGrath call this the Document Type Spectrum
by analogy with the continuous rainbow formed by the visible light spectrum
([DocEng2002]). At the endpoints, it is easy to contrast highly narrative style
documents from those that are highly transactionally oriented, just as it is easy
to distinguish red from blue. But it can be difficult to distinguish different
shades of a single color.

These difficult distinctions arise in the middle of the Document Type
Spectrum where documents contain both narrative and transactional content.
This is where we find hybrid documents like catalogs, encyclopedias, and
requests for quotes.

The point is that this is a continuum. Defining document in a technology-
neutral way as a purposeful and self-contained collection of information
seems to cover both ends of the continuum and lets us avoid trying to impose
a distinction about where some information ceases to be a document and
becomes a set of data.

1.4 Unification in Document Engineering

Once we acknowledge the Document Type Spectrum, we are motivated to
emphasize what document analysis and data analysis have in common instead
of focusing on their differences. This unification or synthesis is embodied in
the emerging discipline of Document Engineering ([DocEng2005]). The
methods and artifacts used in Document Engineering build on those aspects of
traditional document analysis that are appropriate for transactional documents
while merging them with techniques from data modeling and object-oriented
design. Combining these two approaches exploits the rigor of data modeling
and normalization to make document analysis more systematic, while
exploiting the heuristics and flexibility of the latter to make the former more
pragmatic.

This synthesis is essential because narrative and transactional documents are
often closely related, either by structural transformation or by business
processes. Consider, for example, the close relationship between tax forms
and the instructions for filling them out, or between product brochures and
purchase orders.

Page 5 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

2. Setting the Stage to Compare and Synthesize
Document Analysis and Data Analysis
The review and synthesis of the methods used to analyze and model narrative
and transactional documents in this paper is organized in terms of the three
central modeling activities of Document Engineering. These are harvesting
components, consolidating components, assembling components, and
assembling document models. We will briefly introduce these four activities
and then treat each of them in depth to compare, contrast, but ultimately to
converge how we think about them for narrative and transactional documents.

We analyze existing document models as well as any implementation
guidelines and standards, sample document instances, web pages, and other
information sources to harvest all potentially meaningful information
components and the constraints that govern their values, arrangement, and
use. Of course we can't ignore the people who create, review, approve, query,
or do other things with these documents. In particular, in domains or new
business models where few documents exist, what we can learn from people is
critical because we can derive information and document requirements from
their goals and tasks. In many situations existing documents are extremely
valuable proxies for, or confirmations of, what people tell us.

After we have harvested and disaggregated candidate components from our
sampled inventory of documents and information sources, we need to ensure
that every component is semantically distinct. That is, we want to have only
one name for each component. This means we must merge synonyms
(candidate components with different names but the same meaning) and
rename homonyms (candidate components with the same names but different
meanings). Our resulting modeling artifact will be a consolidated table of
content components.

These candidate components are a set of meaningful building blocks that can
use be used to assemble semantically richer structures and models of
documents. Next, we assemble sets of these information components into
meaningful structures to create a coherent conceptual view we call the
document component model. We advocate doing this by using data analysis
techniques that normalize the components into structures based on their
functional dependency.

Page 6 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

We then use this component model to assemble the components into one or
more document assembly models. The basic model of a document consists of
two types of components, the content components that contain discrete
information values and the structural components that are aggregations of the
content ones. On this basis, a document model can be described as a top-level
structural component that assembles the set of components needed to carry out
a self-contained exchange of information.

Defining this document model is a two-stage process. First, we must assemble
our components into structural building blocks composed of dependent
components. These structural components also associate with other structural
components in various roles. This creates a generalized view of the domain or
context of use sometimes known as a Domain Model but which we prefer to
call a document component model.

Each document assembly model takes a different view of the document
component model by following the relationships between components that
enforce the interpretation required for its more specialized context of use. The
document assembly model can then be encoded as an XML schema.

3. Harvesting Components
Our ability to understand the common semantics embodied in the inventory
can be constrained by differences in how the documents or information
sources are presented. To identify the concepts and meanings for our
components, we need to see past these differences. Extracting the underlying
semantic components from their physical implementations is called harvesting
the inventory.

Documents from all parts of the Document Type Spectrum contain
components but those we find on the narrative end tend to be presentational
and at the transactional end more content based. In the center we find
structural components that may be required for presentational or semantic
requirements. Put another way, it is the mix of the three varieties of
components that determines where a document fits along the spectrum.

The easiest components to find are those in transactional documents. Here
candidate components typically appear as labeled data entry fields in forms or
are explicitly marked up or delimited in some stream of data. It is also useful

Page 7 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

to study the source code of any relevant applications that process documents.
These may contain both business rules and hidden components disguised as
data variables. Application or markup code often describes a component more
precisely than the labels that appear in a user interface.

In contrast to transactional documents, documents on the narrative side of the
Document Type Spectrum are likely to have fewer, harder-to-identify
candidate components. These documents generally have fewer processing
requirements and therefore fewer rules about specific components. And with
fewer rules, we need fewer components because we don't need to distinguish
them.

This is true, almost by definition, for documents that are entirely narrative
because they tell a story whose themes, characters, and plot develops
gradually. While it is possible to label sections or chapters of the text with
titles or assign index terms to them, it just isn't useful to treat those parts as
specialized types of content on that basis.

Narrative documents can hide or obscure candidate components in paragraphs
or other blocks of text. Document analysts refer to these as "Mixed Content"
components because they are mixed into surrounding text that may be more
generic. A common form of mixed content is an otherwise unstructured text
paragraph that contains emphasized words, glossary terms, references to
tables or figures, citations to supporting documents, or links to footnotes or
endnotes (these are often called "Inline" components).

As we move from the narrative end of the document type spectrum toward
regions with hybrid document types such as reference books, product
documentation and operating or assembly instructions, components are more
readily identified. Sometimes the components are explicitly labeled, such as
Note, Warning, or Instructions, but most of the time they aren't. But we can
often recognize components such as Question, Answer, Code Example,
Illustration, Caption, Map, and Portrait. There are more presentational rules
about these components so they occur more predictably and have a more
consistent appearance when they do.

All types of documents contain structures that group their components. These
can be either presentational or semantic, but we are most concerned with the
semantic ones.

Page 8 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

Because the rules governing narrative documents tend to be weak and
nonspecific, there are limits to the rigor with which components can be
grouped into structures. So the set of candidate components that emerges from
analysis of narrative documents is typically a combination of content and
presentational structural ones (such as lists and tables). The relative
proportions of each type of component in this mix are hard to predict and
heavily influenced by the skill and biases of the document analyst.

Semantic structures are more evident in transactional documents. Because of
their formal and precise definitions, we generally find semantic structures
implemented as containers for components. In more narrative types of
documents, cross-references, footnotes, and hypertext links and anchors are
the most typical mechanisms for implementing semantic structures.

4. Consolidating Components
We can begin consolidation with the candidate components from any of the
information sources, but we recommend using the most authoritative source or
the one that yielded the most components. This is usually a transactional
document type.

Sometimes it will be difficult to decide whether a candidate component
duplicates one already in the consolidated table. To improve semantic
understanding, we should confirm any business rules that apply to harvested
components, especially those that constrain its possible values or
dependencies on other components. These constraints are more numerous for
components harvested from transactional documents but they can exist for
narrative components.

A good way to distinguish homonyms is to add a context qualifier to create
more precise names. We might distinguish among the three types of Item
Identifiers by naming them Specific Item Identifier, Catalog Product
Identifier, and Line Item Identifier.

Having harvested and consolidated a list of components, we can take our
consolidated table of candidate components and construct a conceptual model
of the components by assembling them into a document component model.

Page 9 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

5. Assembling Component Models
The ultimate objective of information analysis in Document Engineering is to
create a generalized, conceptual model capable of expressing the business
rules for all types of documents required within the context of use. We call
this artifact a document component model.

A document component model should define all the necessary components
that maximize reuse and minimize redundancy when designing new document
models.

How rigorously you can define a document component model depends on the
number and precision of the business rules we need to satisfy. But there are
some simple principles.

A small set of loose rules indicate a context of use that can be satisfied by a
simple document component model, while more precise rules demand more
sophistication in the model.

Business rules and the components that emerge from transactional documents
tend to be more content oriented. This means the components for these
contexts lend themselves to precise definition in terms of data types, possible
values, and occurrence restrictions.

In contrast, the rules emerging from contexts dominated by narrative
documents are more qualitative and less precise. So the components that
emerge from their analysis tend to be larger, have a more generalized
meaning, and are less suited for or subject to absolute instance or structural
rules. For example, in contexts with more narrative types of documents such
as technical publications, reports, policies, procedures, and reference books,
the content components tend to be in coarser blocks of text without much
regular internal structure. Even in these components the rules we discover
may concern the relationships among components and reflect principles or
best practices in document design. These are often specified in style guides,
rules, or templates that guide authors when they create these types of
documents.

Indeed, it is often because of the obvious need to leave decisions about
content up to the author in some contexts that narrative documents are

Page 10 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

employed rather than transactional ones. Instances of narrative documents like
repair procedures, policies, or textbooks might conform to structural rules, but
their content is inherently heterogeneous and the semantic relationships
among their content components can be only weakly specified. We can't
easily reduce the process of creating them to "filling out a form" in which
every instance has exactly the same components in precise and fixed
relationships.

The differences between transactional and narrative style documents and the
nature of the business rules that apply to them influence the approach to
creating document component models. In particular, they may determine the
extent to which we can employ formal and rigorous techniques to decide
which candidate components go together to create aggregate or composite
structural components.

The weak semantic constraints in narrative components often don't provide
unambiguous justification for deciding what components go together. But this
doesn't mean we have no way of advancing the goals of increased regularity
and minimal redundancy in our component models. We can use our judgment
as designers to enforce stronger and clearer constraints in models. We can also
eliminate choices that could lead to inconsistencies or interoperability
problems.

Of course, in contexts where there are few strong semantic constraints, you
can't fully exploit the power of formal techniques for assembling document
components. We may resort to an approach that assembles structures
iteratively through a kind of reverse engineering of the documents required or
suggested by the context. This approach is called "Core plus
contextualization" in Document Engineering, and in effect bypasses the
formal analysis of component assemblies in favor of direct assembly of
document models (see [Bloodworth2004] for a modeling case study that
contrasts normalization and "core plus contextualization.")

Nevertheless, while the processes of normalization are formally defined,
ultimately it is the heuristic interpretation of business requirements and rules
that determines how we apply these formalisms and therefore determine the
quality of the final component model.

Practical experience tells us that we may need to reverse or relax our

Page 11 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

interpretation of dependency for the sake of other requirements such as
simplicity, interoperability, or efficiency. This may result in a smaller set of
somewhat larger components than complete normalization would yield.

But even in these cases, having dependent component structures as a reference
allows us to make conscious rather than ad hoc modeling refinements. In other
words, while it is not essential to have a perfectly normalized document
component model, we should at least understand if and why it is not.

One common refinement is to try to reduce the number of associations in the
model. For example, if we determine that actually having multiple instances
of a role in an association is rare, even though not impossible, it may be
simpler to merge the two structures and accept some potential duplication and
therefore redundancy. In effect, we denormalize parts of the model.

6. Assembling Document Models
A document component model might be the final modeling artifact if we were
designing databases, but we have more work to do if we want to design
documents.

The reason we're not done yet is because a document is a self-contained set of
information for a specific purpose. So a document that describes a book, tax
receipt, customer, purchase order, or flight reservation will organize the
information it contains from the perspective of a single transaction or event. A
book is published, taxes paid, a customer signed up, a purchase order issued, a
flight reservation made. But a document component model is a description of
the network of all possible interpretations of the components and their
associations. If we want to exchange documents with a specific interpretation
we need another kind of model. What we call a document assembly model is
such a model.

By document assembly we mean defining a top-level structure and nesting the
subsidiary components within a hierarchy to form an inverted tree of
components. The challenge with document assembly is to design models that
satisfy the requirements and optimize the reuse of common components.

When we are dealing with document exchanges, we don't want flexibility, we
want unambiguous semantic interpretation. For example, in the model of a

Page 12 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

specific type of document we do not want to allow any alternative roles and
associations, only those required for the context of that document. Therefore a
document assembly model defines one document-specific view of the more
complex document component model. For this reason documents are based on
hierarchical models.

Each document assembly model imposes an unambiguous definition of a
document structure. The hierarchy expresses rules about the use of the
components. In effect, when we present a hierarchical document assembly
model we are saying; "for this document, interpret the information this way."
This ability of hierarchical structures to convey semantics makes them natural
for documents and the document assembly models that define them.

Some types of documents, particularly those on the narrative end of the
Document Type Spectrum, have such a common assembly model that it is
immediately recognizable as a pattern. For example, many books assemble a
foreword, preface, introduction, chapters, appendices, and an index in that
order. As they assemble their document models, authors and publishers
employ these patterns because they recognize that those processing the
documents will be familiar with them.

The assembly patterns for narrative documents might seem different from
those for transactional documents such as orders, flight bookings, or calendar
event submissions. However, they all follow the same principle that assembly
is based on the contextual requirements for a given document.

Each type of document usually requires its own document assembly model.
To start creating this model we must choose the structural component that will
form the root of the document tree. We can think of this as the entry point into
the document component model. Once we choose an entry point, we need to
make decisions about the inclusion of other structures and their components.
These decisions are based on the business rules the roles other structures have
in their associations with the entry point structure. These rules are stronger in
transactional contexts. First, the choice of associations available is influenced
by the cardinality of the role. If the role is mandatory, the associated structure
must be assembled into the model. Optional associations are assembled into
the model only if their roles are required by structural or semantic business
rules. For all structures in the assembly model we must also decide which
content components are required. Again, we must include any mandatory

Page 13 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

content components. And once again, the use of optional components is based
on the rules for our context of use.

The document model assembly follows associations through the component
model and makes choices about which components to include until all the
requirements of the context of use are satisfied.

7. Summary
Document analysis and data analysis come from different intellectual
traditions. In addition, the practitioners of these approaches often come from
different educational backgrounds, may have little professional
communication with each other, and can fail to recognize the overlap in their
goals and methods. We cannot, however, just shrug our shoulders and treat
documents and data as separate universes. Too many applications and services
involve a mixture of narrative and transactional document types, and
information can efficiently flow from one to the next only if it is modeled in a
way that doesn't assume or favor one class of document type over another.

To produce document models like these, Document Engineering proposes a
document-centric reformulation of traditional data analysis. But it recasts its
formal and specialized methods to apply equally to narrative style documents.
At the same time it takes the best practices of document analysis and applies
them to understanding information components.

This synthesis achieves the composite goal of both analysis methods - creating
formal specifications of information components and classes of documents
that contain them, satisfying both the business processes in which they
participate and the people who create and use them.

Bibliography
[Bloodworth2004]

Bloodworth, Allison and Glushko, Robert J., Model-driven Application
Design for a Campus Calendar Network, IdeAlliance XML 2004
Conference, 2004.

[Codd1970]
Codd, Edgar F., A relational model of data for large shared data banks,

Page 14 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

Communications of the ACM, 1970 (377-387).
[DocEng2002]

Glushko, Robert J. and McGrath, Tim, Patterns and Reuse in Document
Engineering, IdeAlliance XML 2002 Conference, 2002.

[DocEng2005]
Glushko, Robert J. and McGrath, Tim, Document Engineering: Analyzing
and Designing Documents for Business Informatics and Web Services,
MIT Press, 2005.

[Maler1995]
Maler, Eve L. and El Andaloussi, Jeanne, Developing SGML DTDs:
From Text to Model to Markup, Prentice Hall, 1995.

XHTML rendition made possible by SchemaSoft's Document Interpreter™ technology.

Page 15 of 15Modeling Methods and Artifacts for Crossing the Data/Document Divide

12/20/2005file://C:\Documents and Settings\glushko\My Documents\Conferences\2005-11-XML200...

