i

TEXT DEVELOPMENT AND MANAGEMENT IN UNIX-BASED PROJECTS

Robert J. Glushko

Bell Laboratories Whippany, NJ 07981

ABSTRACT

Mismatches in technology, media, and
organizations in the development of
software and software documentation often
leave the documentation late, incomplete,
and poorly coordinated with the software.
One solution to this problem is to treat
software documentation like software.
SOLID, the System for On-Line Information
Development, builds on the popular UNIX*
operating system and exploits the idea
that all information that can be stored
on a computer shares a common life cycle
and can be created, managed, and
delivered with the same methods and
commands. SOLID, together with the UNIX
system, solves ten key problems of text
development and management that can be
faced by any project.

INTRODUCTION

The Problem: Mismatch Between Software
and Documentation

As computer systems become increasingly
complex, more comprehensive and timely
documentation is needed to support them.
Unfortunately, the methods for developing
and delivering software documents have
not kept pace with the rapid advances in
software technology that have made the
systems possible. New operating systems,
programming languages, and software
development tools have made programmers
more productive, but few comparable
breakthroughs have helped document
writers. Much of the documentation for
the latest computer systems is produced
and delivered on paper by methods that
have changed little in decades. This
mismatch between the technology and media
of software and documentation often
leaves documentation late, incomplete,
and poorly coordinated with the software
that it is supposed to serve.

* UNIX is a trademark of Bell Laboratories.
My comments refer to the version known as
System V distributed by Western Electric.

CH2017-2/84/0000/0473$01.00 © 1984 |EEE

473

The mismatch between documentation and
software often includes a mismatch in the
organizations that produce them. Instead
of working closely with software
developers from the start of a project,
document developers may have little
contact with the system or the developers
until the software is nearly complete.
Document developers and programmers
usually work in separate, non-parallel
organizations, impeding the communication
and interchange that hastens and
clarifies documents. When software
changes, the corresponding changes to the
documentation may not be made for months,
if they are made at all.

Word Processing Is Not the Solution

Many software projects have tried to
solve the problems of late and incomplete
documentation by speeding up document
development using word processing. But
it solves only part of the problem. Word
processing’s limitations can best be seen
by contrasting typical word processing
work with software documents.

Most word processing systems support the
entry, editing, formatting, and filing of
documents. Such documents typically have
single authors, undergo little revision,
and need no coordination with other
documents during their development or
delivery.

Contrast these documents with the
documentation for computer systems,
including user and operator manuals,
training materials, etc. Such documents
are often lengthy, have many authors and
versions, and require complex formatting.
In addition, they need serious source and
configuration controls to prevent
simultaneous editing, to allow for
backups, and to synchronize named
releases in coordination with software.

Word processing may be useful as a tool
for an individual writer when its
metaphor of the video screen as an
electronic piece of paper--usually
described as "what you see is what you
get"--is appropriate. But in document
development for complex computer systems,
what we see isn’t all we want. What we

want is coordination between software and
its associated documentation throughout
the complete life cycle of the system.

The Solution: Treat Documentation Like
Software

With others at Bell Laboratories,** I
have attempted to exploit a different
metaphor for the development of software
documents--software documents are like
software. The text of programs is read
by computers, and the text of documents
is read by people, but both can be
created, edited, managed, and distributed
in the same time frame, in the same
medium, and using the same tools.

Our goal was more than just copying a
"programmer‘s environment" to create a
"documenter‘s environment." We set out to
borrow and generalize the tools and
methods of software development to create
a common information repository for all
the information needed by everyone
involved in a project. System designers,
human factors engineers, technical
writers, programmers, and project
managers would all work in a common
information database that contained the
software, documentation, and other text
associated with the system throughout its
entire life cycle.

BUILDING ON UNIX

We started with the UNIX operating
system. The UNIX programming environment
is widely used, especially because of its
emphasis on software tools, its
programmable command interpreter, and its
hierarchical file system.® An important
collection of UNIX utilities is known as
the Programmer‘s Workbench, upon which
developers build their own customized
development environments.® In addition,
the UNIX system has significant text
processing utilities, including commands
for pattern searching in files, sorting,
counting, and editors and formatters.:?
Our goal was to build a portable
framework for information development
that integrated all the text development
and management activities, while overtly
supporting the customization needed to
optimize it for a specific project.

SOLID-System for On-Line Information
Development.

We built several system development
environments and studied those built by
others. We analyzed the goals each had,
the concepts they embodied, and the
implementation details. Finally, we put
together SOLID, the System for On-Line
Information Development.* The name
contains neither "Software" nor
"Documentation" because the core
principle is that both are information in
text form that have a common life cycle.

** Especially Mike Bianchi, Tom Foregger,
Ken Hicks, John Mashey, and Pat Parseghian.

474

SOLID provides commands for outlining a
New source module, editing it, making it
"official," extracting a copy to update,
reinstalling the revisions, and then
generating and storing the final product
from the source. SOLID contains a simple
on-line documentation system from which
formatted documents can be retrieved by
name, the date they were last changed, or
by keywords contained in titles or
section headings.,

SOLID can be thought of as consisting of
two domains. Source files (editable
documents or program text) constitute one
domain, and product files (formatted
documents, executable programs) make up
the other. The source domain is
subdivided into types. Types are groups
of source files that share a common
outline or skeleton, a programming or
formatting language, or a membership in a
sub-system, Finally, the source domain
is mapped to the product domain by
generation procedures for each type.

For example, the source type cmain
contains C language program source files,
The generation procedure finds the source
file in the appropriate directory in the
source domain for that type, runs the C
compiler with all the necessary options,
and installs the executable binary file
in the product directory that contains
executable commands. The source type
doc/cmd contains editable versions of
UNIX-style reference documents for user
commands from which the nroff text
formatter generates on-line documents
("manual pages").

Organizing information into types
provides the flexibility to create,
maintain, and deliver all text
information in the project without
influencing design decisions. Type
definition is completely under
administrator control and specified in
tables for visibility and extensibility.
In general, all SOLID“s software and
documentation is under SOLID control, so
the SOLID administrator can easily change
or extend any of the system’s
capabilities,

We started sharing SOLID informally
within Bell Labs in late 1981. Our user
community now contains dozens of sites
throughout Bell Labs and Western Electric
where it is used to develop software
documentation, programs, computer-based
training, and combinations’of all three.

Each site supports as many as thirty
simultaneous users.

PROBLEMS OF TEXT DEVELOPMENT ARD MANAGEMENT

In the sections that follow, ten problems
of text development and management that
are solved by SOLID and the UNIX system
are described. Each problem is
characterized by a few colloquial
symptoms that show that the problems are
general. Where appropriate, the UNIX

=

T T

tools that contribute to the solution are
discussed.

Shared Development.

e You edited that, tool Now I have to
edit YOUR copy to add the changes I
just made to MY copy.

e I know someone is editing that now,
but I don’t know who it is.

Any project with significant text to
develop must keep a master copy of the
information and prevent simultaneous
editing. Most UNIX-based projects use
the Source Code Control System® to keep
track of multiple versions and to control
when and by whom changes can be made.
SOLID’s interface to the UNIX SCCS
utilities like admin, delta, and get uses
the "source type'" abstraction to hide the
details of where files are stored. SOLID
also makes it easy to incorporate local
procedures into the source control
scheme; for example, to inform software
developers automatically, via electronic
mail, whenever a requirement document
changes requires little more than an
entry in a table.

Version Control.
e Is this the latest version?
e When did it start doing THAT?
e Who made it do THAT, and why?
e I know it worked last March.

e What "Verbose" option? There’s
nothing about it in the manual.

scCcS efficiently stores the complete
history of a source file by recording
only the changes from one version to the
next. Any version of a source file can
be reconstructed by starting with the
first version and executing as many
intermediate changes as necessary. The
date and version of any piece of product
that was generated from SCCS-managed
source can be determined using the UNIX
what command.

The last symptom of this problem is not
so easily cured, but "synchronizing"
software and documentation is made
possible by a uniform view of both kinds
of source. Documentation becomes more
important and visible when it is treated
just like software and developed at the
same time in the same environment.

Redundant Text.

e The overview section should be the
same in the user, administrator, and
management manual.

e Those two paragraphs were copied all
through the user manual. It will
take weeks to find and change them
all.

475

SOLID”s "collection" mechanism includes
the same document in different logical
units, such as guides for different users
of the system, without making additional
copies of the file. Collections appear
to users as custom tables of contents
that list only those on-line documents
relevant to their jobs. If the document
modules can be used repeatedly, but are
too small to make sense by themselves,
SOLID manages them as "document
fragments." Fragments are inserted into
documents using the nroff text
formatter’s "include" request.

Information Retrieval.

e I know it is in the manual
somewhere.

e Is that document available yet? The
table of contents hasn’t been
updated in weeks.

e Is this copy the latest version?

The ancestor of SOLID’s on-line document
retrieval system is the standard UNIX
command man, which retrieves reference
documents from the on-line user manual.®
Searching for documents whose names,
titles, or section headings contain
keywords is a straightforward use of the
UNIX pattern search command grep.

SOLID automates the tedious tasks of
inventorying and indexing the on-line
documents. Every night, when the load on
the computer is lightest, programs
scheduled by the UNIX cron program
determine if any documents have been
added or changed and updates the tables
of contents and indexes if necessary.

Standards

e Why don’t people follow standards
around here?

e Have you seen the standards manual?
It is 100 pages long!l

Often documents have a well-defined
structure with a standard format. For
example, documents in the UNIX user’s
manual have sections for NAME, SYNOPSIS,
DESCRIPTION, EXAMPLES, etc. An easy way
to create a new document of this type is
to start with an outline or "skeleton'
document and then "fill in the blanks."
SOLID generalizes this basic idea so that
any source type has a skeleton that
guides the developers to what information
is needed while painlessly enforcing
standards. Skeletons help users as well,
because consistent style assures them
that related documents and programs
contain similar content in standard form.

SOLID users can invoke the commands of
the UNIX Writer’s Workbench’ to find
spelling mistakes, punctuation errors,
split infinitives, and awkward wording or
sentence structure.

Usability
e How do I get started?
e What can I do next?
e What should I do next?

This problem was challenging to solve.
The features that make the UNIX system
"prograzmer-friendly," the terseness and
modularity of its commands, make it
difficult for non-programmers to use.
SOLID has both a UNIX-style command
interface and a menu interface that
supports task-oriented menus, extensive
prompts and feedback, and context-
sensitive help.

Regeneration of product

e Our guru isn’t here, and now nothing
compiles (formats).

e No one knows how all the pieces fit
together.

The generation procedure, the
instructions for translating a source
file into its product form, is a
necessary part of the definition of a new
source type in SOLID. Generation
procedures in SOLID are under source
control, just like every other type of
text, so it is impossible to "forget'" how
the pieces fit together. The UNIX make
command is one kind of generation
procedure.

Updates
e This page intentionally left blank.
e Pages 4A, 4B, 4C?

e But we haven’t merged the last 3
updates yet!

A popular rule in software engineering is
that "one module should hide one secret."
By treating software documents just like
software, SOLID encourages modular
documentation, in which "one document
should tell one secret." Modularity keeps
documents small, makes them easier to
write and manage, and limits the scope of
changes. There is no need to accumulate
many changes to justify reissuing a bulky
manual.

Multiple development sites

e You don“t have that? We fixed that 3
months ago?

e New York and LA have the same
versions. Don‘t they?

e The tape (document) is in the mail.

SOLID commands for delivering and
installing source files can support
networks of systems for multiple-machine
projects. The UNIX uwucp ("unix-to-unix
copy") command manages the file transfer.

A computer running SOLID might serve as a
single target for information delivery
from many suppliers. It could then serve
as the development environment in which
local information can be integrated with
the supplied information. Finally, it
might function as an "electronic library"
to distribute documents to end users.

Portability

e File names are buried in every
program. We’ll never get the system
to run on the new computer.

e But it only runs on XYZ terminals
with options A, C, and F.

SOLID runs on "standard" UNIX and’is
written using the C programming language
and the UNIX shell command interpreter,
so as UNIX becomes available on new or
different processors, SOLID does too.
SOLID commands rely on generic place
names by using shell environmental
variables. The menu interface is built
using curses and terminfo, a UNIX virtual
terminal toolkit that makes SOLID’s code
work without change on any terminal with
cursor control functions.

SUMMARY

It is not surprising that treating
documentation like software produces
better documentation. Projects that use
SOLID report that documents are more
timely, more complete, and better
coordinated with software. What is
somewhat surprising is that treating
documentation like software also produces
better software. Programmers have
earlier and more reliable requirements,
and the closer involvement of non-
programmers throughout the software life
cycle leads to better design and more
rigorous testing.

In building a text development and
management system using the UNIX
programming environment, we took
advantage of existing UNIX tools. We
preserved the "toolkit" philosophy so
that SOLID can make use of new UNIX
utilities as they become available,
especially since experience has often
shown that programs not intended for
document preparation can make it easier.
Our original charter had been to support
document delivery in telephone company
operations by "piggy-backing" onto a
time-shared UNIX management information
system.® Thus, SOLID was not designed to
be a full-fledged publication system, and
does not take advantage of bit-mapped
display terminals. At the same time,
however, these restrictions to a
"computer-center" architecture and ASCII
terminals have made the system less
complex and more portable. Since we
designed SOLID by studying how projects
customized the UNIX programming
environment, it is not surprising that
SOLID fits a wide range of development
needs.

(1

(2]

(3]

[4]

REFERENCES

B. W. Kernighan and J. R. Mashey,
"The UNIX Programming Environment,"
Computer, vol. 14, no. 4, pp. 12-
24, April 1981,

T. A. Dolotta, R. C. Haight, and J.
R. Mashey, "UNIX Time-Sharing
System: The Programmer”s
Workbench," Bell System Technical
Journal, vol. 57, no. 6, part 2,
pp. 2177-2200, July-August 1978.

R. Furata, J. Scofield, and A.
Shaw, "Document Formatting Systems:
Survey, Concepts, and Issues,' ACM
Computing Surveys, vol. 14 no. 3,
pp. 417-472, September 1982.

M. H. Bianchi, R. J. Glushko, and
J. R. Mashey, "A
Software/Documentation Development
Environment Built From The UNIX
Toolkit," In H.-J. Schneider and
A.I. Wasserman (Eds), Automated
Tools For Information Systems
Design. Amsterdam: North Holland,
1982, pp. 107-108.

AT7

[5)

(6]

[7]

(8]

M. J. Rochkind, "The Source Code
Control System," IEEE Transactions
of Software Engineering, SE-1, pp.
364-3/0, December 1975.

R. J. Glushko, "Lessons In The
Evolution Of A Document Retrieval
System," Proceedings of the 44th
Annual Meeting of the American
Society for Information Science,
pp. 237-239, October 1981.

N. H. MacDonald, "The UNIX Writer’s
Workbench Software: Rationale and
Design," Bell System Technical
Journal, vol. 62, no. 6, part 3,
pp. 1891-1908, July-August 1983.

R. J. Glushko and M. H. Bianchi,
"On-Line Documentation: Mechanizing
Development, Delivery, And Use,"
Bell System Technical Journal, vol.
61, no. 6, part 2, pp. 1313-1323,
July-August 1982.

