
Model-driven Application Design for a
Campus Calendar Network
Allison Bloodworth <abloodworth@berkeley.edu>

Robert J. Glushko <glushko@sims.berkeley.eduglushko@sims.berkeley.edu>

Abstract
Due to the decentralized nature of computing on the University of California, Berkeley campus,
different schools, departments, and campus organizations often create applications in an independent
and ad-hoc fashion. A striking example of this occurs with event calendars -- at least 80 different
calendars exist on the berkeley.edu domain. Each calendar has its own way of describing events,
uses different forms for submitting them, and different databases to store them. This means that there
is no automated way to cross-post event information among these calendars. Cross-posting is accom-
plished today using manual data entry forms located on many calendars' websites, or by sending an
email with event information to a calendar administrator.

This situation is not novel. Most large organizations struggle with incompatible models and applica-
tions for time sheets, expense forms, project schedules, registrations, etc. The problems are also
typical of those that arise between enterprises with incompatible catalogs and transactional documents
like orders and invoices.

In the fall of 2003 a team of UC Berkeley staff members, led by the first author and advised by the
second author, began the process of solving this problem. We developed a standard data model of
an Event flexible and scalable enough to accommodate the requirements of most calendars on the
Berkeley campus. The group began by selecting 23 campus calendars and harvesting the data elements
from each one. We then went through a process of harmonizing and consolidating the data elements
into a list of candidate components. The design portion of the process involved using normalization
procedures to separate the selected components into functionally dependent aggregates. This resulted
in a conceptual model of an event. The group’s final step was to begin the implementation process
by encoding this conceptual model into an XML schema.

This Event model was then used as the basis for a model-driven event management system, the UC
Berkeley Calendar Network. Our team created a web-based calendar that can display multiple views
of events conforming to this Event data model. In conjunction with our Calendar Management tool,
which allows calendar administrators to both manage the events in their calendar and customize their
calendar’s appearance, the calendar we provide can be used by many organizations on campus. This
tool provides numerous ways to customize the calendar, including the use of cascading style sheets
or XSL transforms. Calendars using our system will store their events in a centralized repository
also based on our Event data model. However, there are calendar administrators who have specialized
web development needs, or a need to maintain their own repository of event information and thus
cannot use our calendar and repository. For these users, we outline a process by which they can send
event information to, or pull information from the centralized event repository using an XML document
that, again, is based on our Event data model.

1XML 2004 Proceedings by SchemaSoft

XSL•FO
RenderX

mailto:abloodworth@berkeley.edu
mailto:glushko@sims.berkeley.edu
mailto:glushko@sims.berkeley.edu
http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Table of Contents
1. Overview of the Paper ... 2
2. Overview of the UC Berkeley Calendar Network Project ... 3

2.1. Calendars at UC Berkeley .. 3
2.2. The UC Berkeley Calendar Network Project ... 4
2.3. Development Constraints .. 5

2.3.1. Working in the University Environment ... 5
2.3.2. Different Levels of User Technical Expertise .. 6

3. Event Data Modeling .. 6
3.1. Genesis of the Project ... 6
3.2. Document Engineering an Event ... 6

3.2.1. Context & Business Process Analysis .. 7
3.2.1.1. The Document Engineering Approach ... 7
3.2.1.2. The Event Modeling Process ... 7

3.2.2. Document Analysis .. 7
3.2.2.1. The Document Engineering Approach ... 7
3.2.2.2. The Event Modeling Process ... 7

3.2.2.2.1. Research On Existing Data Models .. 7
3.2.2.2.2. Selection of Calendars for Evaluation ... 9

3.2.3. Component Analysis .. 11
3.2.3.1. The Document Engineering Approach ... 11
3.2.3.2. The Event Modeling Process ... 12

3.2.3.2.1. Harvesting Data Elements .. 12
3.2.3.2.2. Consolidating Candidate Components .. 14

3.2.4. Component Assembly ... 16
3.2.4.1. The Document Engineering Approach ... 16
3.2.4.2. The Event Modeling Process ... 16

3.2.4.2.1. Scope & Level of Modeling Granularity .. 16
3.2.5. Document Assembly .. 18

3.2.5.1. The Document Engineering Approach ... 18
3.2.5.2. The Event Modeling Process ... 18

3.2.6. Implementation ... 18
3.2.6.1. The Document Engineering Approach ... 18
3.2.6.2. The Event Modeling Process ... 18

4. UC Berkeley Calendar Network[UCBCN] .. 18
4.1. Calendar Management Tool .. 18

4.1.1. Event Manager .. 18
4.1.2. Format Calendar .. 19
4.1.3. Web-based Calendar ... 20

Bibliography ... 23

1. Overview of the Paper
This paper will outline the process followed by a group of researchers, masters students, and employees at the University
of California at Berkeley as they created a standard data model for a calendar event that could be used by all event
calendars on campus. It also describes a subsequently developed web application based on this standard data model
of an Event, whose function was to manage web-based calendars and event information contained in these calendars.

Figure 1 depicts the Event model as a UML class diagram. We will discuss many of the analysis and design consider-
ations that led us this final model. It is admittedly a very complex model, much of the detail of which will not be visible

2XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

in the .pdf version of this document. However we have included this diagram anyway to convey a sense of the com-
plexity of the final model.

Figure 1. UML class diagram of the Event model

When formulating the Event model, the modeling team followed a methodology taught by the second author at the
School of Information Management & Systems (SIMS) at UC Berkeley, called "Document Engineering." The goal of
Document Engineering is to create "robust and re-usable models of information exchanges and their business processes
suitable for deployment in service oriented architectures, such as web services."[DocEng] This case study will describe
this methodology, explain the goals of each step in the process, and show how it was applied to the real-world Event
modeling problem. It will then describe the resultant application developed by the Berkeley Calendar Network team,
as well as the benefits of creating a web application with a XML schema-encoded data model.

2. Overview of the UC Berkeley Calendar Network
Project

2.1. Calendars at UC Berkeley
Due to the decentralized nature of computing on the University of California at Berkeley campus, different schools,
departments, and campus organizations often create applications in an independent and ad-hoc fashion. The lack of
campus-wide guidelines and standards for designing and building applications make it difficult for developers to design
for interoperability and reuse. Consequently, the Berkeley campus is inundated with applications serving a similar
purpose and repurposing similar content but built with different technologies and based on different, and often incom-
patible, data models.

A striking example of this problem is illustrated by event calendars; at least 80 different calendars exist in the berke-
ley.edu domain. Each department independently creates a web-based calendar based on their own definition of an
event, uses different forms for submitting these events, and different databases to store them. Consequently, there is
no easy way to cross-post or share event information among calendars. This means that many calendars do not include
events from other departments that would be of interest to their users, and there is no centralized place on the Web to
go to find information on all events occurring on the Berkeley campus. Although the UC Berkeley gateway site

3XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

(www.berkeley.edu) endeavors to be an aggregator of event information, they are unable to obtain a complete listing
of all campus events. This is because to post to the gateway calendar, departments must either use a web-based “Add
Event" form, or send an email request to the calendar administrator. Although many departments would welcome the
chance to publicize their event on other calendars, they do not have the time, inclination, or resources to do this for
each and every event. To make matters worse, if a department would like to share their events with additional calendars,
they must repeat this process with every calendar.

The current system is problematic in many ways. The process of re-entering event information wastes time, is inherently
error prone and makes it difficult to maintain the integrity of data located in multiple locations. Additionally, replicating
event information increases data storage costs and can increase overall complexity. Finally, incompatible data models
limit the amount and type of event information that can be shared or repurposed. These issues hinder the creation and
consumption of web-based event information on the UC Berkeley campus.

2.2. The UC Berkeley Calendar Network Project
The UC Berkeley Calendar Network project was created to address these problems. The project began in the summer
of 2003 when the first author, who was then a graduate student at UC Berkeley's School of Information Management
& Systems (SIMS) and a Graduate Student Researcher at the Center for Document Engineering (CDE), undertook a
collaborative effort with UC Berkeley staff members to develop a standard data model of an Event. The goal of this
group was to create an Event data model that was flexible and scalable enough to accommodate the requirements of
most calendars on the Berkeley campus. This Event model was then used as the basis for the design of an event man-
agement system, the UC Berkeley Calendar Network[UCBCN]. The goal of the Calendar Network project was to improve
the process of sharing event information on the UC Berkeley campus. It was the SIMS master’s thesis of the Berkeley
Calendar Network team, which consisted of the first author, Nadine Fiebrich, Myra Liu, and Zhanna Shamis.

The architecture of the system is depicted in Figure 2. The main components include:

• A standard data model of an Event, encoded in an XML schema

• A centralized repository of event information, based on the Event data model

• A Calendar Management Tool

• Allows users to manage their events in the repository

• Helps users customize a visually compelling dynamic web-based calendar

• XML document interfaces based on the Event model for external calendars to send event information to, and extract
information from the central repository

4XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 2. UC Berkeley Calendar Network System Architecture diagram

Figure 2 depicts two different ways of interacting with the central repository. Calendars may access the repository
through the Calendar Management tool, using either the default calendar, a customized version of the default calendar
created by modifying the Cascading Style Sheet (CSS), or a completely new calendar created by modifying the default
XSL transform. Alternatively, calendars may use web services to send an XML document to the central repository to
upload their information, or request a download of event information from the repository, which is returned in an XML
document.

2.3. Development Constraints

2.3.1. Working in the University Environment

The development of this system was strongly constrained by the unique environment in which it would operate: the
university. Most universities, including the University of California, have a decentralized administration structure de-
signed to allow intellectual freedom and encourage innovation. This means that campus departments and organizations
often have the authority to decide internally how they would like to do business. At UC Berkeley there are very few
formal guidelines about how websites or web calendars should be set up, and few resources, such as centralized databases,
which can be shared among the various campus departments and organizations. Because there are few standards set
from above, most of these organizations create their applications and websites in isolation with little to no thought
about how they might work together. In order to deal with this unique environment where any community-wide
standards are usually adopted in a grass-roots fashion, the Event modeling team and Berkeley Calendar Network team
viewed all work on this project as part of a larger marketing process. The groups involved as many campus calendar

5XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

owners as possible in all phases of the project, including needs assessment, the Event modeling process, and the design
and usability testing of the web calendar and Calendar Management Tool. We believe that integrating the input of all
campus calendar owners into the development process was and will continue to be a critical step towards encouraging
adoption of this system.

2.3.2. Different Levels of User Technical Expertise

The modeling team's survey of campus calendars during the Event modeling process revealed that calendars on the
UC Berkeley campus exhibit a wide range of technical complexity. Some calendars are connected to sophisticated
ticketing and payment systems and have event data which is very specialized to their domain. Other calendars are
static HTML pages which are simply lists of very simple events. There are also many organizations on campus that
do not currently have calendars, often due to a lack of available resources to create them. Our system had to meet the
needs of as many of these different types of users as possible.

3. Event Data Modeling

3.1. Genesis of the Project
This idea for this project was generated in the Document Engineering course taught by the second author at SIMS in
the spring of 2003. Students were asked to create a model of a calendar event by analyzing the data found in 6 UC
Berkeley campus calendars. During the summer of 2003 as part of a Center for Document Engineering (CDE)[CDE]
effort, a modeling team comprised of the first author and several campus calendar owners and administrators was
formed to continue the Event modeling process. The second author was an advisor to this group. Although the team's
efforts were focused primarily on the calendar domain, the overall goal was to create a model of a campus event that
could be used in the type of calendaring application we envisioned as well as in other campus applications that might
need to use the concept of an event. We believed this concept could apply to everything from a meeting of a class to
a lunch date to a performance or sporting event. The group also believed that figuring out how to describe an event for
the purposes of a calendar would allow us to capture most, if not all, of the essential descriptors of any type of campus
event, whether it was routinely represented on a calendar or not. The intent was to design a model for an Event that
would become part of the Berkeley Academic Business Language (BABL), a set of data models and associated XML
schemas developed by SIMS students for the domain of university education.

3.2. Document Engineering an Event
Throughout the Event modeling phase of this project the modeling team followed an approach called Document Engin-
eering. On the CDE website, Document Engineering is defined as "a new discipline for specifying, designing, and
implementing the electronic documents that request or provide interfaces to business processes via web-based ser-
vices."[CDE]Document Engineering is a way to analyze information from diverse sources and merge it to create a
single, unified data model. A Document Engineer has an "artifact-focused view of modeling,"[DocEng] and begins
by analyzing existing documents from businesses or entities that need to communicate with each other. This data is
augmented by gathering of information from other sources of requirements, such as the people who create or use the
documents. A data model for the problem space is then created, which results in a set of reusable components that are
usually expressed as XML schemas. This data model may then be used to build documents that all these entities can
use to communicate. The use of this common data model allows different groups to exchange information in a loosely-
coupled manner, while still ensuring that all entities know exactly what the information means. Thus Document Engin-
eering may be thought of as "a 'document-centric' version of"…"the classical" analyze - design - refine - implement
methodology."[DesDocTWS]

6XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

3.2.1. Context & Business Process Analysis

3.2.1.1. The Document Engineering Approach

The Document Engineering process often begins with a top-down analysis of the context, or strategic business objectives
of the organization or organizations involved, as well as business processes to ensure that the Document Engineer un-
derstands the strategy driving the applications that use the data he is trying to model.

3.2.1.2. The Event Modeling Process

In the case of the event calendar domain, the contextual analysis was fairly straightforward. A web calendar is generally
a marketing tool whose main purpose is to publicize events, either within a community or to the general public. Through
interviews with campus calendar owners, which occurred concurrently with the "Document Analysis" data-modeling
phase (see section below), we determined that this was an accurate description of the purpose of web calendars at UC
Berkeley. Some calendars had different requirements regarding with whom they share the data, but the purpose for
these calendars was essentially the same.

After analyzing the business processes of several calendars via interviews with 15 different calendar owners, the team
determined that most web-based event calendars were a forms and workflow type of application where event information
is entered into a database and displayed based on a certain set of rules. In most cases the calendars on the UC Berkeley
campus were very simple, and the main rule was that event information was displayed based simply on the date range
selected. This range was sometimes selected by the user, or, in the case of static webpages, the calendar administrator.
The calendar administrator would of course have other rules based on departmental policies they would follow in de-
ciding which events to post on their calendar.

Some of the more advanced calendars allowed users to query a database of events using additional search criteria
beyond the date, sort event information in some fashion, or included ticketing and payment systems. Email distribution
lists which operated behind the scenes and various features of event management systems currently in use were other
important process details which helped the modeling team formulate the event model.

3.2.2. Document Analysis

3.2.2.1. The Document Engineering Approach

The Document Engineering approach emphasizes the analysis of existing physical models in a domain as a starting
point for the creation of a new model. The objective of the Document Analysis phase, which is a core focus of Document
Engineering, is "to create a conceptual perspective that encompasses all the information requirements within the required
context of use."[DocEng] The use of existing physical models ensures that a new model will be comprehensive, as
well as usable by all users in the domain. During this phase, a list of existing document models in the domain, called
the Document Inventory, are analyzed and a representative sample of relevant documents are chosen for closer analysis.
These documents may include "document guidelines and standards, sample document instances, Web pages, and other
information sources to harvest all potentially meaningful information components and the constraints that govern their
values, arrangement and use."[DocEng]

3.2.2.2. The Event Modeling Process

3.2.2.2.1. Research On Existing Data Models

An important tenet of Document Engineering is "encourage reuse." This means that any Document Engineering effort
should include the researching of any standards or work done by other groups in the chosen domain. Widely-accepted
existing standards or models which already provide accurate representation of the context being analyzed should be
reused wherever possible.

7XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

The modeling team began this process by researching other data models of calendar events. While we located some
models that at first glance appeared extremely relevant, after closer analysis found that they were only partly appropriate
for our requirements.

3.2.2.2.1.1. iCalendar

We first looked at iCalendar, the Internet Calendaring and Scheduling Object Core Specification (RFC 2445). This
document describes the open standard created by the Internet Engineering Task Force in 1998, which is characterised
by the authors as “a common format for openly exchanging calendaring and scheduling information across the Inter-
net."[iCalendar]The group quickly realized that although we would need to understand this pervasive standard in order
to make sure it could be mapped to our model, it was geared more towards personal calendaring systems like Microsoft
Outlook or Apple’s iCal, not a public event calendar created for the purpose of publicizing events on the web. The
iCalendar specification details the way that everything from events to to-do’s to journal entries and free-busy time on
a personal calendar should be handled, but does not address the way event details such as speakers, sponsors, and ad-
mission information would be organized.

However, the problem of recurring events is one that both personal calendaring systems and public event calendars
share, and the iCalendar specification solved that problem very elegantly. Thus the recurrence model in the final Event
schema is based directly on the iCalendar recurrence model. Because this specification was somewhat difficult to de-
cipher, we also reviewed the iCalendar DTD Document (xCal). This was a helpful reference which gave a quick
overview of the specification by showing what a DTD for iCalendar would look like. [xCal]

3.2.2.2.1.2. SKICal

The modeling team then looked at the Structured Knowledge Initiative Calendar, or SKICal, which was created as an
internet draft in July 2001. The authors of this document had a goal similar to ours: “to improve the information infra-
structure concerned with public events (concerts, sports competitions, conferences etc.)."[SKICalSite] SKICal is an
extension of iCalendar whose goal is to "make it more useful for managing public events outside of the business world
(sports, culture, etc.)," the domain for which iCalendar was originally intended.[SKICal-iCal] The specification states
that "SkiCal expands the traditional property-set of name, address, telephone number and business category, adding
structured information about people, places, things, activities and the conditions and terms for interaction with resources.
SkiCal provides a structure for information about dates and times, directions, rules and recommendations for particip-
ation, pricing and reservation schemes, access information for those with special needs, ownership and responsibilities
and promotional material." Their concept of an event is based on the concepts of "'TimeSpenders' seeking information
about available resources ("SkiSources") and 'Publishers' wishing to make that information public."[SKICal]

Although SKICal was closer in principle to what we were looking for, we did not find this system entirely intuitive or
feel that it mapped closely enough to our domain of university education. It seemed that SKICal offered elements that
were not defined specifically enough for campus calendar administrators to understand how to use them in our system,
and the modeling team believed we could organize them more effectively.

For instance, there is an element called "Persons" whose purpose is "to facilitate for TimeSpenders the discovery of
SkiSources relating to specific people - living or dead."[SKICal] "Persons" can also have a descriptor called "SKIRole."
This SKIRole could be anything from "Performer" to "Conductor" to "Creator," and seemed to encompass both people
who were participants in the events, as well as people who were the topic of discussion at or had contributed something
to the event. However, we felt that these things should be clearly separated. Additionally SKIRoles such as "Present"
were allowed for names like "The Queen of Spain." This did not seem like an accurate description of a role in relation
to the event; it was more of a role in relation to the world. In terms of organization, in our system the modeling team
had already hypothesized that the important roles would be things like Sponsors, Participants, and Contacts. We believed
that using those more specific labels would be more intuitive to calendar administrators and help them more easily
understand what information they should collect, make it easier to query for specific information (e.g. "Who is parti-
cipating in/sponsoring the event"), and give us the ability to specify what the required pieces of information were for
a particular event (e.g. an event must have a sponsor).

8XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

There were other elements in SKICal which did not seem to make sense for our domain. For instance, there were cat-
egories like "Thinks" which was supposed to help people locate events "relating to specific concepts, topics, themes
and areas of interest," "Things" which described events "relating to objects, things, specific goods and products, col-
lectors items, various commodities and so forth," and "Actions" which related to "things happening, processes, move-
ments, etc."[SKICal] We felt that these categories unnecessarily complicated what campus calendars usually called
an event "Keyword" or "Event Type" (e.g. lecture, performance, meeting), and thus would not be useful to us. However,
one area of the specification we did find particularly useful was the "How" section, which described different types of
information necessary admission to events. It helped us make sure we weren’t missing anything important when devel-
oping the elements we ended up calling "Entry Conditions."

3.2.2.2.2. Selection of Calendars for Evaluation

The modeling team began this calendar selection portion of the Document Analysis phase by creating a list of the dif-
ferent types of calendars at UC Berkeley that we knew about from personal experience. These included:

• Academic Departments

• Academic Colleges/Schools

• Research Centers

• Libraries

• Performance (e.g. musical, dance)

• Museums

• Athletics

• Personal calendaring systems

The group then discussed whether we should broaden our project scope and model calendars outside of the university
domain, including calendars with different purposes and distributed via different media, such as via newspapers like
the Washington Post. In the end we decided that because our goal was to create an Event model for the UC Berkeley
campus, because there were scores of calendars we could potentially analyze in this domain alone, and because it
seemed that other types of calendars we could think of were similar to the ones found on campus, we would limit
ourselves to analyzing UC Berkeley campus calendars only.

When selecting the actual calendars to analyze, it was suggested by the second author that the modeling team evaluate
about a dozen calendars and select the calendars using the following criteria:

• Does it have a large user base?

• Does it have something distinctive about its type of content?

• Are its users friendly to our efforts?

Selecting big, important calendars whose owners were friendly to our efforts was important because the success of the
system would be based on convincing current calendar owners to stop using their own calendar and switch to ours. If
we had analyzed a particular calendar during the modeling process, it would be more likely that our Event model would
meet that calendar's needs. We believed it would be difficult to convince some calendar owners to switch to our system
in such a decentralized university campus, where everyone creates their own calendar which is very specific to their
own needs. In order to gain the critical mass necessary to make the project a success, we would need to create a system
that convinced both those with simple calendars whose needs we could easily meet as well as owners of large, important
calendars to convert to our new system.

9XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

However, in the end the group decided that despite the public relations value of selecting certain important calendars
to analyze for our model, our first priority was to ensure that we had an accurate model. We could only do this by
analyzing a comprehensive and representative sample of calendars. For this reason, we decided to select calendars
primarily based on the distinctiveness of their content, and use information on the size of the user base or an assessment
of the "friendliness" of the calendar owners only as a tiebreaker if we had similar calendars with the same type of
content. Nonetheless, we were reminded that we would have to these types of political and marketing concerns in mind
throughout the Document Engineering process.

To help us choose calendars to analyze, one of the members of the modeling team created a master list of campus
calendars that we labeled as "stakeholders" in the project. A stakeholder to us could be any calendar on the UC
Berkeley campus (as they were all potential clients of our system), but this list did not cover every calendar on campus.
Our goal was to create a list that covered all important calendars we should not forget when deciding which ones to
model, as well as a representative sampling of all other types of calendars we could think of. We used this list not only
to select calendars, but also to determine whether we had missed certain categories of campus calendars. After reviewing
our initial list, we determined that we should add the following types of calendars:

• Administrative Departments

• Student Groups

As often happens in projects, the modeling team began to experience significant scope creep and had to stop and remind
ourselves of the original goals for the project in order to decide where to set limits on the calendars we should include
in our model. In one instance, a group member suggested that we consider modeling not only events, but also the
"tasks" which appeared on personal calendaring systems. It was hypothesized that a task might be simply an event
without a specific date or time, or even an event that was to take place at some point in the future, but did not have a
set day or time. It was also pointed out that these tasks might be related to holidays, which had a specific date but not
a specific time.

In the end because our domain was event calendars and not personal calendars, and because we had limited time and
resources, we decided to limit the scope to events which were actual "happenings," usually having at least date and
usually a time, as opposed to tasks, or "to-do’s." We chose to limit our scope in this fashion to ensure that we could
complete the project in a reasonable length of time without spending time modeling things which would not be necessary
for the system we were envisioning. Determining the scope a modeling project is often a difficult task, and although
some might content that a "pure" model would not have any view towards the eventual implementation, we found it
was necessary to set these limits in order to keep our discussions focused.

Another way we tried to focus our efforts was to use the 80-20 rule. We decided that the goal in creating the campus
Event model would not necessarily be to enumerate every single data element of every campus calendar and create a
model that had every single element in it. Indeed, our goal was to encourage calendars to converge toward a standard
model of an event, so we decided to only include data elements that were useful to about 80% of the calendars. Calendars
that had domain-specific information that fell in the other 20% could extend our model and store their additional in-
formation in their own repository.

We began the modeling process by putting together a list of calendars to analyze and assigned them to various group
members, who reported back on what they found at subsequent meetings. The modeling team decided that we'd follow
the "law of diminishing returns," and would continue to analyze calendars in this fashion until we stopped finding new
candidate elements in new calendars. This rule required us to review almost twice as many calendars as we had originally
expected, 23 in all. They included:

1. UC Berkeley Calendar [http://www.berkeley.edu/calendar] - Main calendar for the university

2. Letters & Science [http://ls.berkeley.edu/events/] - Academic College/School

3. Haas School of Business [http://www.haas.berkeley.edu/calendar/] - Academic College/School

10XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.berkeley.edu/calendar
http://ls.berkeley.edu/events/
http://www.haas.berkeley.edu/calendar/
http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

4. Men's Basketball [http://calbears.collegesports.com/sports/m-baskbl/sched/cal-m-baskbl-sched.html] - Athletics

5. Academic Calendar [http://opa.vcbf.berkeley.edu/AcademicCalendar/calendardisp.cfm?terms=current] - Calendar
of critical academic dates for the university

6. PDA [http://dream.berkeley.edu/CDE-Events/PDAScreens.html] - Personal Calendaring System

7. International Area Studies [http://ias.berkeley.edu/calendar/] - Academic Department

8. Math Department [http://ls.berkeley.edu/dept/math/calendaring/] - Academic Department

9. Men's Football (Intercollegiate sports) [http://calbears.collegesports.com/default/cal-default.html] - Athletics

10. CalFit [http://calbears.berkeley.edu/calaerobics/aerclasses.asp] - Athletics

11. College of Engineering [http://www.coe.berkeley.edu/events/index.html] - Academic College/School

12. UC Berkeley Library [http://www.lib.berkeley.edu/news_events/exhibits/] - Library

13. Bancroft Library [http://bancroft.berkeley.edu/events/] - Library

14. Capital Projects [http://www.cp.berkeley.edu/TempAccessInterruption.html] - Administrative Department

15. University Health Services [http://www.uhs.berkeley.edu/home/news/calendar.shtml] - Administrative Department

16. Center for Document Engineering [http://cde.berkeley.edu/events/] - Research Center

17. California Biodiversity Center [http://cbc.berkeley.edu/thisweek.html] - Research Center

18. Cal Performances [http://www.calperfs.berkeley.edu/presents/season/2003/calendar_of_events/index.html] -
Performance

19. Lawrence Hall of Science [http://www.lawrencehallofscience.org/pubprogs/] - Museum

20. Music Department Noon Concerts [http://music.berkeley.edu/noon.html] - Performance

21. SUPERB [http://superb.berkeley.edu/calendar.html] - Student Group/Performance

22. Berkeley Art Museum & Pacific Film Archive [http://www.bampfa.berkeley.edu/calendar/index.html] - Museum

23. CalAgenda [http://calagenda.berkeley.edu/] - Personal Calendaring System

3.2.3. Component Analysis

3.2.3.1. The Document Engineering Approach

In Document Engineering, Harvesting Data Elements is the first step of the Component Analysis phase. Harvesting is
the isolation of individual semantic components from the data elements in existing documents. These data elements
are put in a "Table of Candidate Content Components" and given tentative names. It may make sense to change these
names as elements are collected, however, in order to ensure that each element name is "semantically unambiguous
within their context of use."[DocEng] As data elements are harvested from existing documents, it is important to de-
termine what the real data elements are, and not to be fooled by structure or presentation information. For instance, on
a website an element called "Event Description" may contains information on the event's topic, the cost of the event,
and who the event sponsor is. However, while they may look like they are all part of an aggregate called "Event De-
scription," in reality these elements may be being collected separately. Additionally, even if these elements aren't actually
being collected separately, in order to create models with the most reusable components, we may find that it makes
sense to separate them in the data model we eventually create.

11XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://calbears.collegesports.com/sports/m-baskbl/sched/cal-m-baskbl-sched.html
http://opa.vcbf.berkeley.edu/AcademicCalendar/calendardisp.cfm?terms=current
http://dream.berkeley.edu/CDE-Events/PDAScreens.html
http://ias.berkeley.edu/calendar/
http://ls.berkeley.edu/dept/math/calendaring/
http://calbears.collegesports.com/default/cal-default.html
http://calbears.berkeley.edu/calaerobics/aerclasses.asp
http://www.coe.berkeley.edu/events/index.html
http://www.lib.berkeley.edu/news_events/exhibits/
http://bancroft.berkeley.edu/events/
http://www.cp.berkeley.edu/TempAccessInterruption.html
http://www.uhs.berkeley.edu/home/news/calendar.shtml
http://cde.berkeley.edu/events/
http://cbc.berkeley.edu/thisweek.html
http://www.calperfs.berkeley.edu/presents/season/2003/calendar_of_events/index.html
http://www.lawrencehallofscience.org/pubprogs/
http://music.berkeley.edu/noon.html
http://superb.berkeley.edu/calendar.html
http://www.bampfa.berkeley.edu/calendar/index.html
http://calagenda.berkeley.edu/
http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

The next step in Component Analysis is Consolidating Candidate Components. In this phase the Table of Candidate
Content Components is consolidated to ensure that every element is semantically distinct and unique. This means that
elements that are synonyms for other elements are given a single name, and elements that are homonyms are each
given a distinct, unique name. This activity results in a "Consolidated Table of Content Components."

3.2.3.2. The Event Modeling Process

3.2.3.2.1. Harvesting Data Elements

The modeling team began this process by harvesting the data elements from each calendar that had been selected for
analysis. The team found that the best way to determine which data elements a calendar was actually collecting was
to look at their event data entry form, often known as an "Add Event" form. This included both the part exposed to the
user via the interface, as well as the underlying HTML code. It was then helpful to look at the document instances to
determine what the possible values for each data element were. Document instances in this case were the distinct events
listed on each calendar. When certain fields were not exposed on the public web calendar interface, we made a note
to ask the calendar administrator about the function of that element when we interviewed them. This task took on av-
erage about 2 hours per calendar.

After reviewing the data entry form and event listings of a particular calendar, each team member created a list in Excel
of all data elements found in that calendar. We also formulated a short glossary of data elements, which was a list of
data elements we knew were commonly found in event calendars. This helped us determine at the collection stage
whether elements with different names in different calendars were actually the thing, and designated a standard name
for the element. For instance, some calendars might list a "End Date" for an event, while others labeled it "End On."

It was difficult to know in advance how much information or metadata would be needed to understand and distinguish
the candidate data elements. So we iterated a bit before we settled on collecting the following information about each
data element:

Calendar The calendar in which the data element was found.

Calendar Element Name The name of the data element as it appeared in the calendar in which it was found.

Element Glossary Name The name of the data element in our glossary.

Composite Name We used this field to group the elements into categories that we intuitively understood
(e.g. DateTime, Admission Restrictions, Publicity, Contact Info, Sponsor) for the
purposes of work distribution among the team.

New to Glossary This field was used to indicate that an element was new, and had not yet been added
to our glossary.

Description A description of the data element.

Data Type This field indicated the datatype of the data element (e.g. string, integer, enumeration,
date, time, boolean, URL).

Possible Value An example value of the data element, which could be found in the calendar analyzed.

Default Value If the data element had a default in the calendar, it was indicated here.

Code List Values If the element offered choices in the form of an enumeration, the possible values
were listed here.

Required This field indicated whether the element was required in the calendar we were ana-
lyzing.

12XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Min Occurs If the data element has a minimum number of occurrences in the event (e.g. it is re-
quired, or must occur twice), this was indicated here.

Max Occurs If the data element has a maximum number of occurrences in the event, this was in-
dicated here.

of Page Occurrences This element was not used consistently, but indicated when data elements were more
frequently found than others by counting the number of page occurrences in a partic-
ular document.

Name Name of the person who had done the analysis

Needs Clarification Indicated whether we needed to do further follow-up with a calendar owner to de-
termine the true meaning of a data element.

Notes Additional notes about the data element.

Initially the modeling team also tried to use the concept of composites, or aggregate and leaf elements, to help us
capture information about data elements that should be grouped together. We collected data about whether an element
was a parent (also known as an aggregate element), or a child (or a leaf element) as well as what its parent element
was (if it was a child) or what its children elements were (if it was a parent). We found that although this made sense
right away for the DateTime elements, it was difficult to figure out which of the other aggregate elements should be
decomposed into subelements at the time we were harvesting them. For example, we were unsure if the "Name" of a
"Sponsor" should be an aggregate of "First Name" and "Last Name." It would seem logical to do that for a person, but
would not make sense if the sponsor was an academic department. As a result, we decided to postpone decisions about
whether elements should be broken down into subelements for the modeling stage.

We also believed that to some extent how far we would decompose the data elements would depend on the functional
requirements of the target application. For example, if we didn’t foresee a requirement for users to search separately
on "First Name" and "Last Name," we were not sure at this point that it made sense to break them down in the model.

The modeling team used the 80-20 rule make judgments on when not to model very domain-specific data, such as the
data that was found in some sports and arts-related calendars. After some debate, we decided it was unnecessary to
analyze the specialized data of these domains in detail. We made this decision because the substantial required effort
to do this analysis would not result in enough of a benefit, since any data elements we found would definitely not be
used in at least 80% of the calendars.

As the harvesting process progressed and we identified new candidate components, questions about what an event was
continued to come up. Some of these questions and our answers to them included:

Are hours of operation events? They may be permanently recurring events which should be flagged differently
somehow.

Are occurrences that span long peri-
ods of time, such as art exhibits,
events?

They seem to be a different type of event that should be flagged differently
somehow.

How do we deal with conference
events?

Set up a parent and child event structure where the conference is the parent
event, which crosses all the days of the conference, and the sub-events that occur
at the conference are child events.

Is an on-line class that doesn’t have
a specific date or time an event?

It may be a long-running event, but only if it has a specific start and end date.

13XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

What is the difference between an
"Event URL" and a "More Info"
link?

An "Event URL" links directly to a webpage or site devoted only to the event,
and a "More Info" link can go to any page with information on or related to the
event.

Should we store the rules used to
generate recurring events (events that

We may want to store the pattern in case it is important to someone using the
model.

occur more than once following a
pattern), or should the dates simply
be calculated at the application level?

It was suggested by several people working on the development of the Universal Business Language (UBL) that the
modeling team create a controlled vocabulary for every individual term we used to ensure that we knew what each
term meant. For example, if we had determined that we would use the word "start" anytime we needed a term that
meant "to begin or commence" something we would indicate that in a controlled vocabulary. Thus when naming elements
the group would know that we should never use the word "begin;" we would always use "start." Additionally, if we
had a definition in our controlled vocabulary for the word "date," we would always be able to determine what aggregate
terms such as "start date" meant by combining the separate definitions of the two terms.

However, there were other terms, such as "time" or "contact," that were harder to define individually and have them
make sense as part of aggregate terms. Additionally, the modeling team found that much of our terminology was already
standardized within the documents we were analyzing within the calendar problem space, so there weren't often several
commonly accepted choices between which we had to decide. In the end for our project we decided that it would be
easier to just use the glossary we had created to determine what each term should be. It seemed that the effort required
to create a controlled vocabulary was not warranted our domain.

3.2.3.2.2. Consolidating Candidate Components

After the modeling team had collected a total of almost 350 data elements from the 23 calendars we had selected, we
needed to organize them to determine all the unique data elements. First, we merged all the individual spreadsheets
into one master spreadsheet, which is referred to as the Table of Candidate Content Components. At this point we had
data elements with over 150 different names. Next, we ensured that all elements with had been assigned a glossary
name. Elements that only appeared in one calendar were usually assigned a Glossary Name that was the same as their
Calendar Element Name, as were elements that appeared in more than one calendar but had the same Calendar Element
Name. During this process we ensured that elements that were synonyms (different name, same meaning) had the same
Glossary Name, and elements that were homonyms (same name, different meaning) had different Glossary Names.
We highlighted the elements in each calendar in a different color so that it would be easy to see at a glance where each
element came from. Then we sorted the entire spreadsheet containing the data elements from all 23 calendars by
Glossary Name. This spreadsheet then became our Consolidated Table of Content Components and contained close
to 100 unique data elements.

14XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 3. Excel spreadsheet Consolidated Table of Content Components

The modeling team used this list of Consolidated Table of Content Components to determine what elements to include
in the data model. Because we hasn't collected much "domain-specific" information (such as a model of sports scores
or an art exhibit), at this point we reversed the 80-20 rule and included anything in the model that was included in at
least 20% of the calendars. To some extent we made these decisions qualitatively as well; if we thought that although
the element didn’t appear in many of the calendars we analyzed it was an important component of a generalized Event,
we included it.

Additionally, we considered the fact that it was possible in some of these cases that the elements had existed in multiple
calendars, but we just hadn’t disaggregated the elements enough to find it. For example, we included "Sponsor URL"
even though it was only officially included in our spreadsheet once. Other infrequently occurring elements that we
included were: "Participant Description" (which was called "Biography" in the two calendars where we found it),
"Participant Role" (which was usually an implicitly-occurring element, even though it wasn’t usually enumerated
separately), "Sold Out," "Private" (which is very important to our system because it allows calendar owners to indicate
whether or not they want to share an event with other calendars), "Supplemental Info" (about attending the event, not
the event’s content), and "Reservations Recommended."

After the modeling team finished the consolidation process, we had a list of most of the data elements that we would
use in the conceptual model. Later as we created the model, we would add some other elements that we thought were
necessary for the domain but did not find in the calendars. The group also refined some elements that were not initially
represented in as robust a manner as we would have liked. For example, we changed the structure of most of the elements
relating to event repetition because we thought the calendars we analyzed didn’t do an adequate job of representing

15XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

repetition. As mentioned previously, the group modeled the repetition rules for the Event model directly from the
iCalendar specification.

3.2.4. Component Assembly

3.2.4.1. The Document Engineering Approach

Component Assembly is the re-assembling of the consolidated list of semantically unique components into a structure
of functionally dependent aggregates. This is called the conceptual model or Document Component Model, and is often
encoded in a UML (Unified Modeling Language) Class Diagram. This model does not represent the structure of a
single document, but rather "defines all potential document structures that might be required in our context of
use."[DocEng] The creation of this model can sometimes be accomplished using a heuristic, informal design approach
that groups data elements into aggregates that are obvious; the different data elements in a mailing address are a good
example of things that obviously compose an aggregate. However, a more rigorous approach is the use of data normal-
ization techniques, which are based on the concept of functional dependency, to determine aggregates. This approach
says basically that an element is functionally dependent on another element if when the subelement changes, the ag-
gregate element changes. For instance, if you have an "Address" element composed of "Street," "City," and "State,"
the aggregate element "Address" is considered to have changed if the "Street" changes.

3.2.4.2. The Event Modeling Process

3.2.4.2.1. Scope & Level of Modeling Granularity

As the modeling team started to work on the Document Component model, which we encoded as a UML Class Diagram,
the question of what to include in the model as well as what level of granularity we should use came up again. Some
of our advisors suggested that we should determine the level of granularity in a data model based on the requirements
and business rules of the domain they are modeling. This meant that an element should be broken down into subelements
if it was important in this domain to be able to determine the values of the subelements separately. For instance, would
we ever need to know the exact second an event began or ended?

To answer these questions, the modeling team had to ask again what the scope of our efforts was. We initially had
hoped to create a model of an Event that would serve both our intended application as well as any future needs the
campus might have in terms of collecting information on events. However, the group realized that without significant
additional analysis, we could not adequately predict all possible future applications of this Event model. Thus we again
decided that we would for the most part restrict our modeling efforts to the domain of calendar events. At the same
time, we would watch for elements that would make sense as part of our calendar Event model, but would significantly
increase the robustness of the model if it were applied to other Event-type domains. For instance, it might make sense
to eventually be able to use our Event model to describe class meetings of courses on campus.

3.2.4.2.1.1. Data Element Normalization

The modeling team began the creation of the conceptual model by taking all the elements in the Consolidated list of
Content Components and determining which ones had functional dependencies on each other in order to create aggregates.
For example, we created an element called "DateTime" which indicated the point (or points) in time that the event was
occurring. It included all subelements relating to date or time, such as "StartTime," "EndTime," "StartDate," and "En-
dDate." As mentioned previously, we often determined the level to which we should break down elements by trying
to ascertain whether we would ever need to know their component parts separately in our domain. Additionally, if we
could easily parse out the component parts if necessary, we generally did not break the elements down any further.
For example, we decided not to break down "StartDate" into "Day," "Month," and "Year" because we could parse
those components out of "StartDate" if necessary, and did not feel it would be helpful to add that additional level of
complexity to the model.

The modeling team also tried to reuse elements that had already been defined by existing standards groups wherever
possible. We decided to use the element that the Oasis Universal Business Language (UBL) Technical Commit-

16XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

tee[UBLTC] had defined for "Address" in their 1.0 Beta Release.[UBLReusable] We also looked at UBL's "Party-
Type"[UBLReusable] element as a possible way of defining both a person and an organization, but found that it contained
elements that we did not need, such as "Party Tax Scheme" and "Language." We also considered using the "PersonType"
defined by BABL in its "Roles" schema.[BABLRoles] However, found that it was, again, too specific to that domain,
and included elements that we didn’t need in our model, such as "Gender," "Marital Status," and "Ethnicity." We did,
however, end up using the "Personal Name Type," which defined a the structure of a name for a person, from the
BABL Common Components Type.[BABLCCT]

3.2.4.2.1.1.1. Strict Normalization vs "Core + Contexts"

As the modeling team went through Component Assembly process, we were trying to reconcile two approaches to
creating a conceptual model that differ in their prescriptiveness and formality. One approach was to follow the strict
normalization procedures described above, only creating aggregates that had clear functional dependencies. A schema
could then be created by following relationships through the model in any direction, picking up components along the
way. It is suggested that this more "bottom up" method not only allows an analyst to see patterns in the data that could
define reusable aggregates (e.g. "Contact Info" includes "Email," "Address," "Phone Numbers," etc.), but also allows
the analyst to create better models by understanding the actual semantics and business rules which define the relationships
between components.

Another approach was to follow what the second author had defined in his SIMS Document Engineering course as the
"Core and Context" methodology. In this system, a set of "Core" elements that comprise the absolute definition of an
event would be chosen, and then additional "Contexts" would be created that could be added to the "Core" to create
models that would be appropriate for different calendars. This is a more top-down and heuristic approach where the
Document Engineer looks at the documents within the problem space and figures out what makes them unique as a
way to determine aggregates.

For instance, we could have decided that every event must have a "Core" composed of Title, Description, and DateTime.
We might even decide that one of these elements is optional, but that these things define the "Core" of what an event
is. Then we would add contexts, which would define optional "add-ons" to the Event model, such as "Location," "Re-
currence," "Sponsors," "Sports," "Arts," or "Attendance Restrictions." This was the approach used by the spring 2003
Document Engineering course that created the first Event models that were part of this project. An Event schema could
then be constructed on a calendar-by-calendar basis by starting with the "Core" module and adding other "Context"
modules as needed.

In our case, after creating a UML model following strict normalization procedures, the modeling team realized that
we had a very granular model which numerous child elements and not many distinct groups of elements. For instance,
we had elements such as "Refreshments" and "Supplemental Info," for which it might have been more logical to find
an aggregate that encompassed them. It seemed that process of determining groupings based entirely on functional
dependencies did not seem to work well in this domain. For example, when trying to determine what was functionally
dependent on Event, it was argued that maybe nothing really was, because theoretically you could change the title as
well as the description and be referring to the same event. This may be because there isn't a clearly defined model of
an Event within the world; it is a somewhat different concept to different people. What something like an "Address"
is composed of is much more well-defined. Additionally, we had scoped out domain-specific ("Context") elements
such as those relating to "Sports" or "Arts," but we were not sure how we would fit them into a strictly normalized
model. Following a strict functional dependency methodology, many of these elements (e.g. "Opponent," "Score,"
"Media," "Artist") would end up being individual, disaggregated components, and there would be no easy way for
campus calendar owners to "add the arts context" or the "sports context."

In the end the Event schema was developed using both normalization procedures and a more heuristic definition of a
"Core" set of elements along with "Contexts." These "Contexts" are really aggregates that can be used to augment the
"Core" model if necessary, depending on the needs of the calendar. It seems that normalization procedures are most
valuable as you begin to build the model, allowing the analyst to determine business rules, relationships between the
components, and opportunities for reuse. Later on, depending on the domain, it may make sense to create additional
aggregates or groupings not necessarily based on functional dependencies to make the model more segmented and
approachable to the users.

17XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

3.2.5. Document Assembly

3.2.5.1. The Document Engineering Approach

In this phase of the Document Engineering process, an actual Document Model is created from the Document Com-
ponent Model. The Document Component Model represents all possible associations between the components it contains.
A Document Assembly Model, however, is created by choosing a root component and "walking through" the associations
of the Document Component Model to create a hierarchical document.

3.2.5.2. The Event Modeling Process

When creating a Document Component Model, or conceptual model, a Document Engineer may choose to enumerate
all possible associations within the model. This could be represented by associations within the model that move in
multiple directions (e.g. an "Event" has a "Location," "Locations" have "Events", and "DateTimes" may 'contain'
"Events"). However, because it was clear to the modeling team from the beginning of the project that the Event model
was our final deliverable, we did not model these types of multi-directional associations. In our Document Assembly
Model, "Event" became the root element and other elements and aggregates became children of "Event."

3.2.6. Implementation

3.2.6.1. The Document Engineering Approach

The last phase the Document Engineering process is to represent the models created in some physical form so they
can be used in applications. One way to do this is to encode the model in an XML Schema. Using a model that has
been encoded in a physical form ensures that for software applications developed based on the model, "the rules about
information and process that are captured by the model remain explicit or externalized from the software that enforces
them."[DocEng]

3.2.6.2. The Event Modeling Process

The final step was to begin the "implementation" process by encoding this Document Assembly Model into an XML
schema. The final version of the Event model can be found at http://dream.berkeley.edu/EventCalendar/Events.xsd.

4. UC Berkeley Calendar Network[UCBCN]
The Event model forms the basis for the development of all the tools the Berkeley Calendar Network team has created.
We believe these tools will fulfill the needs of a majority of calendar owners on the UC Berkeley campus, and will
ensure that these calendar owners are able to easily switch to the Berkeley Calendar Network system.

This final section will show some preliminary designs for Calendar Management Tool and web-based calendar. As
these tools are central to the acceptance of the Event model, they have been the focus of most of our development efforts
to date. We are currently developing a complete design and software implementation plan and expect to begin devel-
opment soon. Further specifications for the Calendar Management Tool may be found in the Berkeley Calendar Network
team's final report.[UCBCNFR]

4.1. Calendar Management Tool

4.1.1. Event Manager

The Event Manager comprises the main set of functionality in the UC Berkeley Calendar Network Tool. It provides
all of the functionality needed to manage events. This includes:

18XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://dream.berkeley.edu/EventCalendar/Events.xsd
http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

• Creating, editing or deleting events

• Posting or removing events from the calendar

• Searching for events on other calendars within the network

• Setting up subscriptions for particular types of events from other calendars within the network

• Exporting event data out of the system

Figure 4. Event Manager

4.1.2. Format Calendar

The Format Calendar page allows calendar administrators to customize their calendar's 'look-and-feel' by modifying
the settings in each of its five sections: General Appearance, Headers, Global Navigation, Calendar Navigation, Event
Detail and Footer. These sections are displayed as separate tabs within the body of the page. The application then
generates calendar views with a XSL transform and CSS file stored within the system. For more advanced users who
want to have greater control over the appearance of their calendar beyond the customization settings of the application,
they can choose to replace the default XSL transform and CSS files with their own in the Advanced Settings Tab.

19XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 5. Calendar Navigation

4.1.3. Web-based Calendar

This calendar is created by applying an XSL transform & CSS file to an XML document conforming to our Event
schema. This is an important feature in the system as it allows for the separation of content from presentation. The
XML document which is returned to the web browser will be created based on the type of information requested in
the query to the repository. This document can then be styled with either the standard XSL transform and CSS file, or

20XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

a customized XSL transform and/or CSS file which will allow calendar administrators to replicate their own website's
"look and feel." This was an essential feature for many of the different campus calendars, as branding and integration
with their current website is often a concern.

Figure 6. Horizontal Navigation Grid View

21XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Figure 7. Vertical Navigation List View

Acknowledgements
Many thanks to the second author of Document Engineering, Tim McGrath, for his guidance on applying the Document
Engineering methodology to this project; all members of UBL who advised the group on the Event modeling phase
of the project, including Sue Probert, Dave Carlson, Lisa Seaburg, Jean McInerney, Chee-Kai Chin, and Stephen Green;
Professor Marti Hearst for her help with the Berkeley Calendar Network interface and guidance on user-centered design
principles; Nadine Fiebrich, Zhanna Shamis, and Myra Liu for their hard work on the development of the Berkeley
Calendar Network (BCN); Carolyn Cracraft and Alex Milowski for their assistance with the BCN project; Jon Conhaim
and Jeff Kahn of UC Berkeley for their strong support of the BCN project; Sara Leavitt, Kathleen Connors, Jeff Mc-
Cullough, Sarah Jones, and Mimi Mugler for their diligent work on the Event model; and all the UCB calendar admin-
istrators who participated in our interviews and user testing.

22XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Bibliography
[BABLCCT] Berkeley Academic Business Language CommonComponentTypes.xsd. Available at: http://dream.berke-

ley.edu/doc-eng/xml/xsd/babl/schemas/babl_0p02/CoreComponents/CommonComponentTypes.xsd

[BABLRoles] Berkeley Academic Business Language Roles.xsd schema. Available at: http://dream.berkeley.edu/doc-
eng/xml/xsd/babl/schemas/babl_0p02/AggregateComponents/Roles/Roles.xsd

[CDE] Center for Document Engineering. Available at: http://cde.berkeley.edu/about/

[DesDocTWS] Document Engineering: Designing Documents for Transactions and Web Services, Glushko, R., XML
2003 Conference Presentation, 8 Dec 2003. Available at: http://www.sims.berke-
ley.edu/~glushko/xml2003/slide37.htm

[DocEng] Document Engineering, Glushko, R., & McGrath, T., MIT Press, In press.

[iCalendar] IETF RFC 2445: Internet Calendaring and Scheduling Core Object Specification (iCalendar), Dawson,
F., & Stenerson, D., IETF, Nov 1998. Available at: http://www.ietf.org/rfc/rfc2445.txt

[SKICal] SkiCal - An extension of iCalendar, Internet-Draft, Fitzpatrick, G., Lanner, P., Hjelm, N., IETF, July 2001.
Available at: http://skical.metamatrix.se/skical20010905.html

[SKICal-iCal] SKICal and iCalendar. Available at: http://skical.metamatrix.se/eng/icalendar_eng.html

[SKICalSite] SKICal: Structured Knowledge Initiative Calendar. Available at: http://skical.metamatrix.se/.
[http://skical.metamatrix.se/]

[UBLReusable] UBL-Reusable-1.0-beta.xsd. Available at: http://www.oasis-open.org/committees/ubl/lcsc/UBLv1-
beta/xsd/common/UBL-Reusable-1.0-beta.xsd

[UBLTC] Oasis Universal Business Language Technical Committee. Available at: http://www.oasis-open.org/com-
mittees/tc_home.php?wg_abbrev=ubl

[UCBCN] UC Berkeley Calendar Network. Website: http://dream.berkeley.edu/EventCalendar/

[UCBCNFR] UC Berkeley Calendar Network, Bloodworth, A., Fiebrich, N., Liu, M., Shamis, Z., 15 May 2004.
Available at: http://dream.berkeley.edu/EventCalendar/Documents/FinalReport/Website/

[xCal] iCalendar DTD Document (xCal), Internet-Draft, Dawson, F., Reddy, S., Royer, D., Plamondon, E., IETF, 15
Feb 2002. Available at: http://www.ietf.org/proceedings/02mar/I-D/draft-ietf-calsch-many-xcal-01.txt [
http://www.ietf.org/proceedings/02mar/I-D/draft-ietf-calsch-many-xcal-01.txt]

Biography
Allison Bloodworth

Project Manager
University of California at Berkeley [http://www.berkeley.edu/]
Berkeley
California
United States of America
abloodworth@berkeley.edu

23XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://dream.berkeley.edu/doc-eng/xml/xsd/babl/schemas/babl_0p02/CoreComponents/CommonComponentTypes.xsd
http://dream.berkeley.edu/doc-eng/xml/xsd/babl/schemas/babl_0p02/CoreComponents/CommonComponentTypes.xsd
http://dream.berkeley.edu/doc-eng/xml/xsd/babl/schemas/babl_0p02/AggregateComponents/Roles/Roles.xsd
http://dream.berkeley.edu/doc-eng/xml/xsd/babl/schemas/babl_0p02/AggregateComponents/Roles/Roles.xsd
http://cde.berkeley.edu/about/
http://www.sims.berkeley.edu/~glushko/xml2003/slide37.htm
http://www.sims.berkeley.edu/~glushko/xml2003/slide37.htm
http://www.ietf.org/rfc/rfc2445.txt
http://skical.metamatrix.se/skical20010905.html
http://skical.metamatrix.se/eng/icalendar_eng.html
http://skical.metamatrix.se/
http://www.oasis-open.org/committees/ubl/lcsc/UBLv1-beta/xsd/common/UBL-Reusable-1.0-beta.xsd
http://www.oasis-open.org/committees/ubl/lcsc/UBLv1-beta/xsd/common/UBL-Reusable-1.0-beta.xsd
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=ubl
http://dream.berkeley.edu/EventCalendar/
http://dream.berkeley.edu/EventCalendar/Documents/FinalReport/Website/
http://www.ietf.org/proceedings/02mar/I-D/draft-ietf-calsch-many-xcal-01.txt
http://www.berkeley.edu/
mailto:abloodworth@berkeley.edu
http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

Allison Bloodworth is a recent graduate of the School of Information Management and Systems
[http://www.sims.berkeley.edu/] at the University of California at Berkeley [http://www.berkeley.edu/], and is
currently a Project Manager in the UC Berkeley e-Berkeley [http://eberkeley.berkeley.edu/] Program.

Robert J. Glushko
Adjunct Professor
University of California at Berkeley [http://www.berkeley.edu/]
Berkeley
California
United States of America
glushko@sims.berkeley.edu
Director
Center for Document Engineering [http://cde.berkeley.edu/]
Berkeley
California
United States of America
glushko@sims.berkeley.edu

Bob Glushko is an Adjunct Professor at the University of California at Berkeley [http://www.berkeley.edu/] in
the School of Information Management and Systems [http://www.sims.berkeley.edu/], the Director of the Center
for Document Engineering [http://cde.berkeley.edu], and the President of the Robert J. Glushko and Pamela
Samuelson Foundation. He has twenty-five years of R&D, consulting, and entrepreneurial experience in information
management, electronic publishing, Internet commerce, and human factors in computing systems. He founded or
co-founded three companies, the last of which was Veo Systems in 1997, which pioneered the use of XML for
electronic commerce before its 1999 acquisition by Commerce One. From 1999-2002 he headed Commerce One's
XML architecture and technical standards activities and was named an "Engineering Fellow" in 2000.

24XML 2004 Proceedings by SchemaSoft

Model-driven Application Design for a
Campus Calendar Network

XSL•FO
RenderX

http://www.sims.berkeley.edu/
http://www.berkeley.edu/
http://eberkeley.berkeley.edu/
http://www.berkeley.edu/
mailto:glushko@sims.berkeley.edu
http://cde.berkeley.edu/
mailto:glushko@sims.berkeley.edu
http://www.berkeley.edu/
http://www.sims.berkeley.edu/
http://cde.berkeley.edu
http://cde.berkeley.edu
http://www.schemasoft.com
http://www.w3.org/Style/XSL
http://www.renderx.com/

	1. Overview of the Paper
	2. Overview of the UC Berkeley Calendar Network Project
	2.1. Calendars at UC Berkeley
	2.2. The UC Berkeley Calendar Network Project
	2.3. Development Constraints
	2.3.1. Working in the University Environment
	2.3.2. Different Levels of User Technical Expertise

	3. Event Data Modeling
	3.1. Genesis of the Project
	3.2. Document Engineering an Event
	3.2.1. Context & Business Process Analysis
	3.2.1.1. The Document Engineering Approach
	3.2.1.2. The Event Modeling Process

	3.2.2. Document Analysis
	3.2.2.1. The Document Engineering Approach
	3.2.2.2. The Event Modeling Process
	3.2.2.2.1. Research On Existing Data Models
	3.2.2.2.1.1. iCalendar
	3.2.2.2.1.2. SKICal

	3.2.2.2.2. Selection of Calendars for Evaluation

	3.2.3. Component Analysis
	3.2.3.1. The Document Engineering Approach
	3.2.3.2. The Event Modeling Process
	3.2.3.2.1. Harvesting Data Elements
	3.2.3.2.2. Consolidating Candidate Components

	3.2.4. Component Assembly
	3.2.4.1. The Document Engineering Approach
	3.2.4.2. The Event Modeling Process
	3.2.4.2.1. Scope & Level of Modeling Granularity
	3.2.4.2.1.1. Data Element Normalization
	3.2.4.2.1.1.1. Strict Normalization vs "Core + Contexts"

	3.2.5. Document Assembly
	3.2.5.1. The Document Engineering Approach
	3.2.5.2. The Event Modeling Process

	3.2.6. Implementation
	3.2.6.1. The Document Engineering Approach
	3.2.6.2. The Event Modeling Process

	4. UC Berkeley Calendar Network[UCBCN]
	4.1. Calendar Management Tool
	4.1.1. Event Manager
	4.1.2. Format Calendar
	4.1.3. Web-based Calendar

	Bibliography

