Unstable surface correspondence as the source of local conspiracies

Sharon Inkelas
UC Berkeley
inkelas@berkeley.edu

Stephanie S Shih
Stanford University / UC Berkeley
stephsus@stanford.edu

1. Introduction

- This paper: viewing local and long-distance harmony and dissimilation processes as consequences of segmental correspondence-namely, unstable surface correspondence.
- This view offers an improved perspective on classic nasal-consonant (NC) patterns that have previously been regulated in Optimality Theory by context-specific markedness constraints.

1.1. Agreement by Correspondence (ABC) as a theory of harmony and disharmony

- Agreement by Correspondence theory (ABC; Hansson 2001; Rose and Walker 2004; Bennett 2013; a.o.): phonological patterns such as harmony and dissimilation arise from the interaction of corresponding surface segments.
- Surface CORR(espondence) relationships are determined by phonological similarity (e.g., participating segments are obstruents, liquids, etc.).
(1) Example: hierarchy of correspondence constraints operating on set of stop consonants (Walker 2000b, Hansson 2001, Rose \& Walker 2004, etc.):

Most similar	identity	CORR-NN, CORR-DD, CORR-TT
Less similar	both voiced stops but can differ in [nas]	CORR-ND
	both oral stops but can differ in [voice]	CORR-TD
Least similar	all stops but can differ in [nas] and [voice]	CORR-NT

- Harmony: corresponding segments become more similar in order to satisfy featural identity within a correspondence set (IDENT-CC [F]).
- Disharmony: the cost of satisfying IDENT-CC [F] or other conditions on correspondence is too high; segments become less similar to escape the costly correspondence relationship (following Bennett 2013).
> Unstable Surface correspondence: two structures are similar enough to interact (CORR) but too uncomfortably similar to co-exist within a certain distance. Harmony and disharmony $=$ repairs for resolving this conspiracy.

1.2. $\quad A B C$ as a theory of local interactions?

- ABC was originally devised for long distance consonant harmony patterns (Walker 2000; Hansson 2001; Rose and Walker 2004; Bennett 2013; a.o.), and has since been extended to vowel harmony (Sasa 2009; Rhodes 2012; cf. Jurgec 2013).
- But ABC formalism is not limited to long-distance effects and can actually insightfully handle local assimilatory effects (Wayment 2009; Shih 2013; Inkelas \& Shih 2013; Lionnet 2013; Sylak-Glassman 2013).
- Correspondence is already scaled by proximity (Walker 2000, Hansson 2001, Rose \& Walker 2004, et seq.). Examples of proximity-scaled CorR constraints (notation varies in the literature):

No proximity restriction:	CORR-C: $\infty: \mathrm{C}$	'C's must correspond'
Syllable adjacency:	CORR-C:ఠ:C	'C's in adjacent syllables must correspond'

- The logical end point of a proximity scale is strict adjacency:

Strict string-adjacency: \quad CORR-C::C \quad 'String-adjacent C's must correspond'

- Claim of this paper: the need to repair UNSTABLE CORRESPONDENCE underlies a wider variety of phenomena, including local assimilation (Wayment 2009), local dissimilation, deletion, epenthesis, metathesis. ABC is not limited to (long-distance) (dis)harmony.
$>$ Case study: NC clusters, well-known subject of phonological conspiracies.

2. UnSTABLE CORRESPONDENCE IN NC CLUSTERS

- Cross-linguistically, nasal+fricative (NS) and nasal+voiceless consonant (NÇ) clusters are dispreferred (e.g., Padgett 1994; Pater 1999/2004, Hayes 1999; respectively; see also Hyman 2001).
- NS and NÇ are prone to a number of phonological repairs:
- deletion (e.g., Zoque /N-faha/ \rightarrow [faha]; Padgett 1994)
- epenthesis (e.g., Dutch /zwem-t/ \rightarrow [zwempt] 'swims'; Warner 2002:8)
- fusion (e.g., Indonesian /məN-pilih/ \rightarrow [məmilih] 'to choose, vote'; Pater 2004)
- dissimilation (e.g., Polish/šansa/ \rightarrow [šawsa]; Padgett 1994)
- assimilation (e.g., Mandar /maN+tunu/ \rightarrow [mattun]; Pater 1999/2004)
- Previous accounts invoke NC-specific markedness constraints (e.g., NPA, *NÇ) that are arbitrarily specific to particular strings of segments (Padgett 1994; Pater 1999/2004)
- The view from ABC: repairs triggered by unstable Correspondence within the cluster. NC-specific markedness constraints are not needed.

2.1. Mandar (Pater 1999/2004): \mathbf{N} assimilates totally to following \mathbf{C}

- Mandar nasals assimilate to following voiceless stops (2a). Nasals are tolerated before voiced stops (2b).
(2) a. /maN-tunu/ \rightarrow [mattunu] 'to burn'
b. /maN-dunu/ \rightarrow [mandunu] 'to drink'
- Key insight: adjacent stops are sufficiently similar to interact (Corr-C::C [-cont]), and interacting stops must match in continuancy and voice (IDENT-CC [cont, voice]).
- Assimilation of a nasal to a following voiceless consonant satisfies both Corr-C ::C [-cont] and IDENT-CC [cont, voice].
(3) $/ \mathbf{m a N}-$ tunu/ \rightarrow [mattunu]

		$/$ maN+tunu /	IDENT-CC [cont, voice]	CORR-C::C [-cont]	IDENT-IO [cont]	IDENT-IO [nas]
Correspondence, identity	a.	mat $_{\mathrm{x}} \mathrm{t}_{\mathrm{x}} \mathrm{unu}$				1
Correspondence; no identity	b.	man $_{\mathrm{x}} \mathrm{t}_{\mathrm{x}} \mathrm{unu}$	W 1			L
No correspondence; identity	c.	mat $_{\mathrm{x}} \mathrm{t}_{\mathrm{y}} \mathrm{unu}$		W 1		1
No correspondence; no identity	d.	man $_{\mathrm{x}} \mathrm{t}_{\mathrm{y}} \mathrm{unu}$		W 1		L
No correspondence; dissimilation	e.	maw $_{\mathrm{x}} \mathrm{t}_{\mathrm{y}} \mathrm{unu}$			W 1	1

Note: only changes to C_{1} are considered here (but see §3).

- A nasal + voiced consonant cluster, e,g, /maN-dundu/ \rightarrow [mandundu], already satisfies IDENT-CC [cont, voice] and does not need to undergo gemination:
(4) \quad / maN-dunu/ \rightarrow [mandunu]

		$/ \operatorname{maN}^{2}+\mathrm{dunu} /$	IDENT-CC [cont, voice]	CORR-C::C [-cont]	IDENT-IO [cont]	IDENT-IO [nas]
Correspondence, identity	a.	$\operatorname{mad}_{\mathrm{x}} \mathrm{d}_{\mathrm{x}} \mathrm{unu}$				W 1
Correspondence; no identity	b.	man $_{\mathrm{x}} \mathrm{d}_{\mathrm{x}} \mathrm{unu}$				
No correspondence; identity	c.	$\operatorname{mad}_{\mathrm{x}} \mathrm{d}_{\mathrm{y}} \mathrm{unu}$		W 1		W 1
No correspondence; no identity	d.	man $_{\mathrm{x}} \mathrm{d}_{\mathrm{y}} \mathrm{unu}$		W 1		
No correspondence; dissimilation	e.	maw $_{\mathrm{x}} \mathrm{d}_{\mathrm{y}} \mathrm{unu}$			W 1	W 1

2.2. Polish (Padgett 1994): \mathbf{N} dissimilates to glide before S

- Polish nasals assimilate in place to following stops (5a), but dissimilate to nasal glides before fricatives (5b).
(5) a. pan bog \rightarrow [pambuk] 'lord god'
b. szansa \rightarrow [šaw̃sa] 'chance'
- Key insight: adjacent [-approx] consonants are sufficiently similar to interact (CORR$\mathrm{C}: \mathrm{C}[-$ approx $]$), and interacting consonants must match in continuancy and voice (IDENTCC [cont, voice]).
- Dissimilation of nasal to approximant (6e) evades Corr-C::C[-approx] and IDENT-CC:
(6)

		/ šansa /	$\begin{gathered} \text { IDENT-CC } \\ \text { [cont, place] } \end{gathered}$	CORR-C::C [-approx]	$\begin{gathered} \hline \text { IDENT-IO } \\ \text { [nas] } \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline \text { IDENT-IO } \\ \text { [cont] } \\ \hline \end{gathered}$
Correspondence; identity	a.	šas $_{x} \mathrm{~S}_{\mathrm{x}} \mathrm{a}$			W1	1
Correspondence; no identity	b.	šan $_{x} S_{x} a$	W1			
No correspondence; no identity	c.	šan $_{x} \mathrm{~S}_{\mathrm{y}} \mathrm{a}$		W1		
Correspondence; dissimilation	d.	šaw $\tilde{x}_{x} S_{x} a$	W1			1
No correspondence; dissimilation	${ }^{(8)} \mathrm{e}$.	šaw $\tilde{x}_{\text {S }} \mathrm{S}_{\mathrm{y}} \mathrm{a}$				1

- NC clusters that already agree in [-cont] do correspond and assimilate in place:
(7) pan bog \rightarrow [pambog]

		$/$ pan bog /	IDENT-CC [cont, place]	CoRR-C::C [-approx]	IDENT-IO [nas]	IDENT-IO [cont]
Correspondence; identity	a.	$\operatorname{pam}_{\mathrm{x}} \mathrm{b}_{\mathrm{x}} \mathrm{og}$				
Correspondence; no identity	b.	$\operatorname{pan}_{\mathrm{x}} \mathrm{b}_{\mathrm{x}} \mathrm{og}$	W 1			
No correspondence; no identity	c.	$\operatorname{pan}_{\mathrm{x}} \mathrm{b}_{\mathrm{y}} \mathrm{og}$		W 1		
Correspondence; dissimilation	d.	$\operatorname{paw}_{\mathrm{x}} \mathrm{b}_{\mathrm{x}} \mathrm{og}$	W 1			W 1
No correspondence; dissimilation	e.	paw $_{\mathrm{x}} \mathrm{b}_{\mathrm{y}} \mathrm{og}$				W 1

2.3. Zoque (Padgett 1994: 485): \mathbf{N} deletes before \mathbf{S}

- Zoque nasals assimilate in place before stops (8a) but delete before fricatives (8b).

$$
\begin{array}{llll}
\text { a. } N \text {-burru } & \rightarrow & {[\text { mburru }]} & \text { 'my burro' } \tag{8}\\
\text { b. } N \text {-faha } & \rightarrow & {[\text { faha }]} & \text { 'my belt' }
\end{array}
$$

- Deletion is an extreme end point of dissimilation.
- Key insight: adjacent consonants are sufficiently similar to interact (Corr-C::C), and interacting consonants must match in place and continuancy (IDENT-CC [cont, place])
- By deleting, the nasal evades Corr-C::C and, therefore, IDENT-CC [cont, place]:
N-faha \rightarrow [faha]

		/ N-faha / 'my belt'	IDENT-CC (cont, place]	CORR-C::C	MAX-IO
Correspondence; identity	a.	$\mathrm{m}_{\mathrm{x}} \mathrm{f}_{\mathrm{x}}$ aha	W1		L
Correspondence; no identity	b.	$\mathrm{n}_{\mathrm{x}} \mathrm{f}_{\mathrm{x}}$ aha	W 1		L
No correspondence; no identity	c.	$\mathrm{n}_{\mathrm{x}} \mathrm{f}_{\mathrm{y} \text { aha }}$		W 1	L
Deletion	d.	faha			1

- NC clusters that already agree in [-cont] do correspond and can assimilate in place:
(10)
N-burru \rightarrow [mburru]

		/ N-burru / 'my burro'	IDENT-CC [cont, place]	CORR-C::C	MAX-IO
Correspondence; identity	a.	$\mathrm{m}_{\mathrm{x}} \mathrm{b}_{\mathrm{x}}$ urru			
Correspondence; no identity	b.	$\mathrm{n}_{\mathrm{x}} \mathrm{b}_{\mathrm{x}} \mathrm{urru}$	W 1		
No correspondence; no identity	c.	$\mathrm{n}_{\mathrm{x}} \mathrm{b}_{\mathrm{y}} \mathrm{urru}$		W 1	
Deletion	d.	burru			W 1

Nasal substitution or fusion, e.g. /N-burru/ \rightarrow [murru], is a variant on the deletion repair (e.g. Pater 2004); subtleties in Faith-IO differentiate deletion [burru] (8d) from fusion [murru]

3. TyPOLOGICAL PREDICTIONS (BRIEFLY)

3.1. Directionality

- The above tableaus consider only changes to C_{1}, not C_{2}, in unstable $\mathrm{C}_{1} \mathrm{C}_{2}$ correspondences.
- In the majority of scenarios, it is C_{1} which is affected:
- Positional faithfulness (to onsets) can account for the stability of C_{2}. On positional (e.g. on-set-specific) faithfulness, see e.g. Lombardi 1999, Beckman 1997, Smith 2002.
- Perceptual asymmetries motivate unfaithfulness of C_{1}; see e.g. Steriade's P-Map (2001).
- Sometimes C_{2} is the one to change in NC clusters, by hardening, voicing, even devoicing. In such cases positional faithfulness is subjugated.
(11) Yao postnasal voicing (Hyman 2001:155): adjacent stops correspond and must match in voicing; assimilation occurs

$$
\begin{array}{llll}
\text { /ku-N-péleka/ } & \rightarrow & \text { ku:-m-béleka } & \text { 'to send me' } \\
\text { /ku-N-kwéela/ } & \rightarrow & \text { ku:- }- \text {-gwéela } & \text { 'to climb on me' }
\end{array}
$$

Yao assimilation		/ ku-N-péleka /	IDENT-CC [voice]	CORR-N::T [-cont]	IDENT-IO [cons]	IDENT-IO [+voice]
Correspondence; faithful	a.	ku:m $\mathrm{m}_{\mathrm{x}} \mathrm{p}$ éleka	W 1			L
Correspondence; assimilation	b.	ku:m $\mathrm{m}_{\mathrm{x}} \mathrm{b}$ éleka				1
No correspondence; faithful	c.	ku: $\mathrm{n}_{\mathrm{x}} \mathrm{p}_{\mathrm{y}}$ éleka		W 1		L
No correspondence; [+cons] dissimilation	d.	ku:péleka			W 1	L

3.2. *NT versus *ND

- *ND (= "no post-nasal voiced stops") has been proposed as a parallel constraint to *NT (*NÇ) to account for post-nasal devoicing (Hyman 2001).
(12) Tswana postnasal devoicing (Hyman 2001)

$$
\begin{array}{llll}
\text { N-bón-á/ } & \rightarrow & \text { m-pón-á } & \text { 'see me!' }
\end{array} \quad \text { cf. bón-á 'see' },
$$

- *NT and *ND are contradictory constraints = problematic for OT typology (Zsiga et al. 2006; Gouskova et al. 2011).
- An unstable correspondence-based approach does not need to appeal to a specific *ND constraint. ND effects, though rare, fall out of the system of correspondence constraints:
(13) Hierarchy of correspondence constraints based on nasal stop similarity (Walker 1998, 2000b; Hansson 2001; Rose \& Walker 2004) (see also (1)):
Corr-N::N "

Nasal stops \quad| Corr-N $:: \mathrm{D}$ |
| :--- |

- Postnasal devoicing: adjacent voiced stops (CORR-N $\because: \mathrm{D}$) are an unstable similar correspondence set and must match in nasality/sonority (IDENT-CC[nas]). To avoid nasalization, voicing dissimilation occurs, preventing correspondence.
(14) Tswana dissimilation:/N-bón-á/ \rightarrow m-pón-á

		/N-bóná /	IDENT-CC [nas]	CORR-N::D [-cont, + voice]	IDENT-IO [nas]	IDENT-IO [+voice]
Correspondence; assimilation	a.	$\mathrm{m}_{\mathrm{x}} \mathrm{m}_{\mathrm{x}}$ óná			W 1	L
Correspondence; faithful	b.	$\mathrm{m}_{\mathrm{x}} \mathrm{b}_{\mathrm{x}}$ óná	W 1			L
No correspondence; faithful	c.	$\mathrm{m}_{\mathrm{x}} \mathrm{b}_{\mathrm{y}}$ óná		W 1		L
No correspondence; [voice] dissimilation	d.	$\mathrm{m}_{\mathrm{x}} \mathrm{p}_{\mathrm{y}}$ óná				1

Ranking of CORR-N::T below input-output faithfulness renders it inert to alternation caused by IdENT-CC [nas]: that is, NT clusters are not sufficiently similar to be unstable.

4. Advantages of ABC approach to local NC CONSPIRACIES

The Unstable Correspondence approach has two advantages over past approaches:
4.1. Advantage \#1: Eliminate context-specific markedness constraints and representations.

Constraints:

- Context-specific markedness constraints (e.g., *NÇ, Pater 1999) tend to be somewhat ad hoc. In principle, there should be an entire constraint space of combinations between primitive elements (e.g., *NT, *ND, *NS, *NZ, etc.) (Hayes 1999).
- Under an ABC approach, not necessarily to stipulate contextual markedness. Burden of segment interaction borne by correspondence relationships, similarity, and locality.

Representations:

- Feature-geometric dependence of [place] and [continuant] (Padgett 1994, 1995) [problematizes place assimilation in NS clusters]

| Root | Root |
| :---: | :---: | :---: |
| $[+$ nas $]$ | Place |
| | \mid |
| $[+$ cont $]$ | |

- Assimilation is blocked when it derives the ill-formed *[+nas, +cons, +cont], thus explaining why NS assimilation is rarer than NT (Padgett 1994: 489).
- Under an ABC approach, feature-geometric dependence is obviated by the similaritybased correspondence constraints of $A B C$.
4.2. Advantage \#2: Formal analyses of local and long-distance interaction (harmony and disharmony) are formally parallel.
- Vowel and consonant assimilations can be modeled using the same formal mechanisms (Sasa 2009, Rhodes 2012 in ABC; Jurgec 2013 using licensed alignment).
- ABC can model local tone patterns across adjacent consonants, vowels, and subsegments (Shih 2013) and long-distance subsegmental correspondences (Inkelas and Shih 2013).
- Both local and long-distance assimilations have similarity bases (Wayment 2009; cf. Rose and Walker 2004).
(16) Prerequisite similarity features for parasitic harmony (culled from Rose and Walker 2004: 484-485; Wayment 2009: 61; a.o.) (not an exhaustive list).

Features	Local assimilations	Long-distance harmony
major consonant place	\checkmark Sudanese Arabic	\checkmark Ngbaka
vocalic place	\checkmark Turkish	\checkmark Yowlumne
[sonorant]	\checkmark Italian	\checkmark Malto ([-son])
[continuant]	\checkmark Sanskrit	\checkmark Kera
[voice]	\checkmark Castilian Spanish	\checkmark Kikongo
[color] / [height]	\checkmark Turkish	\checkmark Turkish

4.3. Assimilation as repair for local and long-distance unstable correspondences

(17) $/ 1 /$ assimilates to an immediately following $/ \mathrm{r} /$ in Hungarian (Grimes 2010, section 3.4.9)
/bal-ra/[barra] 'to the left'
/el-rejt/[errejt] 'conceal'
(18) Assimilation as repair for long-distance liquid harmony in Bukusu

- /l/ assimilates across a vowel to a preceding /r/ in Bukusu (Hansson 2001:125; data from http://linguistics.berkeley.edu/CBOLD and Odden 1994). /-il/ = applicative suffix:
a. xam-il-a 'milk for' te:x-el-a 'pick/gather for' i:l-il-a 'cook for'
b. bir-ir-a 'pass for' ir-ir-a 'die' for kar-ir-a 'twist'
(19) Assimilation as repair for local unstable correspondence among sibilants in Hungarian (Siptár \& Törkenczy 2007: 188 ff, Kenesei et al. 1998).
a. $/ \mathrm{S} /$ or $/ 3 /+/ \mathrm{s} / \rightarrow \quad[\mathrm{ss}]$
$\mathrm{ki} / \mathrm{J} /-/ \mathrm{s} / \mathrm{oba} \rightarrow \mathrm{ki}[\mathrm{ss}]$ oba \quad 'small room'
Balá/3/-/s/erint \rightarrow Balá[ss]erint 'according to Blaise
b. $/ \mathrm{S} /$ or $/ \mathrm{z} /+/ \mathrm{z} / \rightarrow \quad \mathrm{zz}]$
má///-/z/ene \rightarrow má[zz]ene 'different music'
gará/3/-/z/árás \rightarrow gára[zz]árás 'garage closing'
(Kenesei et al. 1998)
c. $/ \mathrm{s} /$ or $\left./ \mathrm{z} /+/ \mathrm{J} / \rightarrow \quad \rightarrow \int J\right]$
egé/s/-/J/ereg \rightarrow eqé[$\left[\int\right]$ ereg 'a whole army'
ho/z/-/S/ót \rightarrow ho[$\left.\int J\right]$ ót \quad 'bring some salt'
d. $/ \mathrm{s} /$ or $/ \mathrm{z} /+/ 3 / \rightarrow$ [33]
hú/s/-/3/ák \rightarrow hú[33]ák 'twenty sacks'
bené/z/-/3/ófi \rightarrow bené[33]ófi 'Sophie drops in'
(20) Assimilation as repair for long-distance unstable correspondence among sibilants in many languages, e.g. Samala (=Ineseño Chumash; data from Hansson 2001, citing Applegate 1972).

/k-su-fojin/	[kJufojin]	'I darken it' (Hansson 2001:58-59)
/s-api-tJ ${ }^{\text {ho}}$-it/	[apit $^{\text {fiolit] }}$	'I have had a stroke of good luck'
/ha-s-xintila-waj/	[hafxintilawaf]	'his former Indian name'
/s-ij-tiji-jep-us/	[sistisijepus]	'they (2) show him'

4.4. Deletion (=dissimilation) as repair for local, long-distance unstable correspondence

(21) Zoque (=§2.3): N deletes if it cannot assimilate to following C. Corr forces (local) correspondence; CC constraint requires place identity. Deletion evades both.
a. /N-faha/ \rightarrow [faha] 'my belt'
/N-šapun] \rightarrow [šapun] 'my soap'
b. /N + pama/ \rightarrow [mbama] 'my clothing'
$/ \mathrm{N}+$ burru/ \rightarrow [mburru] 'my burro'
(22) Huave: [h] deletes from coda position following a syllable with another aspirate (example modified from Kim 2008: 81). CORR forces (long-distance) correspondence; CC-Edge requires that correspondents be in the same syllable. Deletion evades both.

$$
\begin{array}{llll}
\text { a. } & \text { /a-pah/ } & \rightarrow & \text { [apah] }
\end{array} l \begin{aligned}
& \text { 'S/he calls' } \\
& \\
& \text { /t-a-h-pah// }
\end{aligned} \rightarrow \text { [tahpa], *tahpah } \quad \begin{aligned}
& \text { 'S/he was called' } \\
& \text { b. /a-naihp/ }
\end{aligned} \rightarrow \text { [anaihp] } \quad \begin{aligned}
& \text { 'S/he sells it' } \\
& \text { /a-h-nap/ }
\end{aligned} \rightarrow \text { [ahnap] } \quad \text { 'It is sold' }
$$

5. Conclusion

- Local and long-distance interactions can be handled in one theory based on correspondence and similarity interactions. (contra autosegmental spreading vs. ABC: e.g., Rose and Walker 2004; Gallagher 2008; Bennett 2013; a.o.).
- Using one formal mechanism highlights empirical parallels: similarity bias in segments participating in both local and long-distance correspondences (e.g., Wayment 2009).
- Our proposal: unstable correspondence between segments drives the same repairs for local and long-distance harmony and disharmony patterns.
\rightarrow Segments that are similar enough to interact but too uncomfortably similar to co-exist within a certain distance will result in repairs of assimilation and dissimilation.
- Still an open question: what is the extent of similarities and differences between local and long-distance attraction of segments, esp. if local and non-local interactions arise from different functional sources (local = co-articulation (Hayes 1999); long-distance $=$ speech planning (Hansson 2001))?
\rightarrow Answer to this should illuminate how formally parallel local and non-local (dis)harmony phenomena should be.

References

Beckman, Jill. 1997. Positional faithfulness, positional neutralization and Shona vowel harmony. Phonology 14.
Bennett, William. 2013 . Dissimilation, Consonant Harmony, and Surface Correspondence. PhD dissertation, Rutgers University.
Gouskova, Maria; Elizabeth Zsiga; and One Tlale Boyer. 2011. Grounded Constraints and the Consonants of Setswana. Lingua 121: 2120-2152.

Grimes, Stephen. 2010. Quantitative investigations in Hungarian Phonotactics and Syllable Structure. PhD dissertation, Indiana University.

Hansson, Gunnar. 2001. Theoretical and Typological Issues in Consonant Harmony. PhD dissertation, University of California, Berkeley.

Hayes, Bruce. 1999. Phonetically-Driven Phonology: The Role of Optimality Theory and Inductive Grounding. In M. Darnell et al., (eds). Functionalism and Formalism in Linguistics, Volume I: General Papers. John Benjamins, Amsterdam. 243-285.

Hyman, Larry M. 2001. The Limits of Phonetic Determinism in Phonology: *NC Revisited. In Elizabeth Hume and Keith Johnson (eds). The Role of Speech Perception in Phonology. San Deigo, CA: Academic Press. 141-185.

Inkelas, Sharon and Stephanie Shih. 2013. Contour segments and tones in (sub)segmental Agreement by Correspondence. Paper presented at the $21^{\text {st }}$ Manchester Phonology Meeting. University of Manchester. 25 May 2013. http://stanford.edu/~stephsus/InkelasShih-mfm2013.pdf

Jurgec, Peter. 2013. Two Types of Parasitic Assimilation. Nordlyd. 40(1): 108-135.
Kenesei, István; Robert M. Vago; and Anna Fenyvesi. 1998. Hungarian. London and New York: Routledge.
Kim, Yuni. 2008. Topics in the Phonology and Morphology of San Francisco Del Mar Huave. PhD dissertation, University of California, Berkeley.
Lionnet, Florian. 2013. Doubly conditioned rounding in Laal: Conditional licensing and correspondence chains. Paper presented at the Berkeley Phonetics and Phonology Forum. 8 April 2013.

Lombardi, Linda. 1999. Positional faithfulness and voicing assimilation in Optimality Theory. Natural Language and Linguistic Theory 17.267-302.
Padgett, Jaye. 1994. Stricture and Nasal Place Assimilation. Natural Language and Linguistic Theory. 12: 465-513.
Pater, Joe. 1999/2004. Austronesian Nasal Substitution and Other NC Effects. In Rene Kager; Harry van der Hulst; and Wim Zonneveld (eds). The Prosody-Morphology Interface. Cambridge, UK: Cambridge University Press. 310-343. (also in John J. McCarthy (ed). Optimality Theory in Phonology: a Reader. Malden, MA: Blackwell. 271-289.)

Rhodes, Russell. 2012. Vowel Harmony as Agreement by Correspondence. In Annual Report of the Berkeley Phonology Laboratory. Berkeley, CA: Phonology Laboratory, UC Berkeley. 138-168.

Rose, Sharon, and Rachel Walker. 2004. A Typology of Consonant Agreement as Correspondence. Language. 80(3): 475-531.

Sasa, Tomomasa. 2009. Treatment of vowel harmony in Optimality Theory. PhD dissertation, University of Iowa.
Shih, Stephanie S. 2013 (under review). Consonant-tone interaction as Agreement by Correspondence. Ms. Stanford University and University of California, Berkeley. http://stanford.edu/~stephsus/shih-ctoneABC-draftms 1-1813.pdf

Siptár, Péter, and Miklós Törkenczy. 2007. The Phonology of Hungarian. The Phonology of the World's Languages. Oxford University Press.

Smith, Jennifer. 2002. Phonological augmentation in prominent positions. PhD dissertation, University of Massachusetts, Amherst.

Sylak-Glassman, John. 2013. An Agreement by Correspondence analysis of Máíjiki nasalization harmony. Paper presented at the $18^{\text {th }}$ Workshop on Structure and Constituency in Languages of the Americas (WSCLA 18). Berkeley, CA. 5 April 2013.

Walker, Rachel. 1998/2000. Nasalization, Neutral Segments, and Opacity Effects. Outstanding Dissertations in Linguistics. New York: Garland Publishing, Inc.

Walker, Rachel. 2000a. Long-distance Consonantal Identity Effects. In Roger Billerey and Brook Lillehaugen (eds). Proceedings of the 19th West Coast Conference on Formal Linguistics. Somerville, MA: Cascadilla Press. 532545.

Walker, Rachel. 2000b. Yaka nasal harmony: Spreading or segmental correspondence? Proceedings of the $26^{\text {th }}$ Annual Meeting of the Berkeley Linguistic Society: General Session and Parasession on Aspect. 321-332.

Warner, Natasha. 2002. The Phonology of Epenthetic Stops: Implications for the Phonetics-phonology Interface in Optimality Theory. Linguistics. 40: 1-27.
Wayment, Adam. 2009. Assimilation as Attraction: Computing Distance, Similarity, and Locality in Phonology. PhD dissertation, Johns Hopkins University.

Zsiga, Elizabeth; Maria Gouskova; and One Tlale. 2006. On the Status of Voiced Stops in Tswana: Against *ND. In Proceedings of NELS 36. University of Massachusetts, Amherst.

