Two kinds of definites in numeral classifier languages *

Peter Jenks
UC Berkeley

Abstract Numeral classifier languages are shown to distinguish definite noun phrases licensed by uniqueness from those licensed by familiarity. Unique definites are expressed by bare nouns, while familiar definites are expressed by indexicals such as demonstrative descriptions or pronouns. This generalization parallels the observation by Schwarz (2009) that German distinguishes unique versus familiar or anaphoric definiteness in its definite article system. The difference between the two types of definites can be reduced to the presence of a semantic index in the case of familiar definites. As familiar definites occur in most E-type contexts, including donkey anaphora, and uniqueness definites are not possible in these contexts, these facts provide support to dynamic analyses of anaphoric processes and pose problems for uniqueness-based approaches, such as the theory of Elbourne (2013).

Keywords: Definiteness, bare nouns, dynamic semantics, E-type anaphora, donkey anaphora

1 Introduction

A longstanding debate in the analysis of definiteness is whether it is better characterized by reference to uniqueness, familiarity, or some mix of the two (Heim 1982, 1990; Kadmon 1990; Roberts 2003). A less popular view is that uniqueness and familiarity are independently necessary to account for separate classes of definite expressions (Birner & Ward 1994; Poesio & Viera 1998). While non-unified views of definiteness in English have been viewed skeptically (e.g. Abbott 1999), recent cross-linguistic work has added grist to the mill of the non-uniformity view. For example, Schwarz (2009) demonstrates that German distinguishes two kinds of definite articles, a weak article licensed by uniqueness and a strong article licensed by familiarity, where the relevant notion of familiarity is what Roberts (2003) calls strong familiarity, licensed by prior mention in a text or conversation.

In this paper, I show that the realization of definiteness in numeral classifier languages provides further support for the independent necessity of uniqueness and

* I am grateful to the participants of SALT 25 for helpful questions and suggestions. For the Thai data I am indebted to the thoughtful assistance of Vichayapan Bandhaya and Ratana Patumwat. For the Mandarin and Cantonese facts which are discussed throughout but not included in the paper I am grateful to I-Hsuan Chen and Herman Leung. Any mistakes in the data and analysis remain my own.

©2015 Jenks
familiarity. The basic generalization is as follows:

(1) In many numeral classifier languages,
 a. unique definites are realized as bare nouns,
 b. familiar definites are realized as demonstratives or overt pronouns.

While this generalization is exemplified below with Thai, the same facts seem to hold in Mandarin Chinese, Korean (e.g. Lee 1995), and Japanese (e.g. Kurafuji 1999, 2004). The generalization does not extend to numeral classifier languages such as Cantonese and Bangla, which mark definiteness with classifiers (Cheng & Sybesma 1999; Dayal 2012), or languages such as Yi (Nuosu), which has a definite article (Jiang 2012). While the facts in these latter languages will be different, this paper raises new question about what is meant by “definiteness” in the relevant literature.

Below I outline four environments which constitute unique definites, mostly following Schwarz (2009). These include general situation definites, weak definites, immediate situation definites, and some cases of bridging. These environments form a unified class in that they do not require any explicit linguistic antecedent. Environments which are licensed by linguistic antecedents constitute cases of familiar definites. In these environments, which include donkey sentences, bare nouns are prohibited. As bare nouns are licensed by uniqueness, the inability of bare nouns to occur as donkey anaphora raises issues for theories which rely only on uniqueness to achieve out-of-scope binding in donkey sentences (Heim 1990; Elbourne 2013).

My analysis below follows proposals by Schwarz (2009). While uniqueness definites denote the unique individual in a particular (minimal) situation, anaphoric definites contain an additional semantic argument, a dynamic index. This analysis makes the right predictions in ‘pronoun of laziness’ contexts, as bare nominals but not indexical expressions receive sloppy interpretations. This final observation connects to an observation by Kurafuji (1998) for Japanese: null pronouns allow sloppy readings in these contexts, while overt pronouns only allow strict readings. I will show that Kurafuji’s generalization follows if null pronouns are simply the pronominal correlate of uniqueness definites.

2 Numeral classifier languages and definiteness

In the literature on the semantics of nominals in numeral classifier languages, it is easy to find examples such as the following, with bare nouns translated as definites (this and all following examples are from Thai):

(2) māa kamlaŋ hàw.
 dog PROG bark
 ‘The dog is barking.’
Such examples constitute the standard evidence for the claim that bare nouns in these languages can be definite. Such a claim has been made, for example, for Thai (e.g. Piriyawiboon 2010), Mandarin (e.g. Cheng & Sybesma 1999), Japanese (e.g. Kurafuji 2004), and Korean (e.g. Lee 1995), among many other languages. Most of the cited works treat definiteness as a unified class, and provide examples such as to establish the claim that bare nouns can be definite.\(^1\)

Interestingly, demonstratives in classifier languages are sometimes claimed to mark definiteness (e.g. Chen 2004 for Mandarin; Lee 1995 for Korean). However, the consistency test of Löbner (1985) shows that demonstratives are not translational equivalents of definite articles (Piriyawiboon 2010: 49):

\[(3)\]

\[
\begin{align*}
\text{dèk } & \text{khon nàn nɔɔn yuù} \quad \text{tə dèk khon nàn mài dài nɔɔn yuù.} \\
\text{child CLF that sleep IMPF} & \text{but child CLF that NEG sleep IMPF}
\end{align*}
\]

‘That child is sleeping but that child is not sleeping.’ (cf. #the)

Putting together the observation that bare nouns can receive definite interpretations and the observation that demonstratives are not translational equivalents of definite articles, the consensus seems to be that “classifier languages do not mark definiteness” (Jiang 2012: p. 15). But many questions remain. What is the nature of the definite interpretation of bare nouns? And in what contexts do demonstratives function as definites?

Enter recent work establishing a robust cross-linguistic contrast between uniqueness and familiarity definites across languages. While observations that some definite articles are anaphoric date back at least to Greenberg (1978), the articles in such languages have not been systematically tested in the contexts of most interest to formal semanticists. In this regard, Schwarz 2009 constitutes a major benchmark, systematically demonstrating that whether or not definite articles in German can be contracted with prepositions is predicted by whether it is licensed by uniqueness or familiarity: while unique definite environments require contraction (‘weak definites’), familiar definite environments systematically require the full definite article (‘strong definites’). More recent work has expanded these observations. For example, Arkoh & Matthewson (2013) show that the Fante determiner -nU only occurs in familiar environments, with bare nouns occurring in uniqueness contexts (though the latter claim remains implicit in their paper). In addition, Schwarz (2013) identifies several other languages with a similar contrast, including Lakhota, which is claimed to have two separate articles for unique versus familiar definites.\(^2\)

1 Lee (1995) is an exception in this regard, as he suggests that the generalization which I demonstrate below for Thai holds for Korean, namely, that bare nouns are unique definites and demonstratives noun phrases are anaphoric. Yet his paper lacks the data to clearly establish this generalization.

2 Uniqueness and familiarity may not even be sufficient to account for the range of definiteness semantics across languages. Barlew (2014) argues that the notion of salience is necessary to account
these observations are taken together, they suggest that a grammatically realized
distinction between unique and familiar definites may be quite common, although
it has been slow to surface due to the fact that it is neutralized or concealed in
“Standard Average European” (Haspelmath 2001).

Below I demonstrate that uniqueness versus familiarity also account for the
distribution of definite bare nouns and definite demonstratives in many numeral
classifier languages: bare nouns are licensed by uniqueness, while demonstratives
are either truly deictic or anaphoric. Once the linguistic context is appropriately
controlled, this distinction is brought into sharp relief. I conclude that it is hard-wired
into the semantics of the relevant nominal expressions: not only do demonstratives
occur in anaphoric definite environments, bare nouns are systematically prohibited
in these environments, just as demonstratives are prohibited in definite environments
licensed by uniqueness. Thus, far from not marking definiteness, it can be shown that
the major distinction in definite semantics is systematically reflected in the nominal
morphosyntax of numeral classifier languages.

3 Bare nouns as unique definites

There are four distinct uses of bare nouns as definites in numeral classifier
languages: larger situation definites, weak definites, immediate situation definites,
and part-whole bridging. These uses are labeled unique definite environments by
Schwarz (2009), who observes that they only permit weak articles — those that can
be contracted — in German. While uniqueness characterize of most of these envi-
ronments, they are also cases where definiteness is licensed pragmatically, without
the help of a linguistic antecedent. In this section I introducing the four uses of bare
nouns. After discussing how they can be accounted for by relativizing uniqueness
to minimal situations, I suggest that these four environments might constitute two
separate varieties of uniqueness-based definiteness.

3.1 Larger situation definites

First, bare nouns in numeral classifier languages are used with larger situation
definiteness (Hawkins 1978), a category where uniqueness is licensed by general
knowledge. For example, the sun, moon, sky, and weather are known to be unique
in all real-world contexts, and as such allow bare nouns:

(4) duəŋ-cən (#duaŋ nán) səwəaŋ məək.
 moon (CLF that) bright very
 ‘The moon is very bright.’

for the distribution of a definite article in Bulu, a Bantu language of Cameroon.
Two kinds of definites in numeral classifier languages

Likewise, predicates which are known to be unique due to common cultural or social knowledge are translated with bare nouns. For example, once equipped with the knowledge that Thai provinces get one Senator and two Ministers of Parliament, the following contrast obtains:

(5)
\[sōo-wōo \text{ chiāj-mày (khon nán) grōot màak.} \]
\[\text{senator} \quad \text{Chiang Mai} \quad \text{CLF} \quad \text{that angry very} \]
\[\text{‘The/That Senator from Chiang Mai is very angry.’} \]

(6)
\[sōo-sōo \text{ chiāj-mày (khon nán) grōot màak.} \]
\[\text{M.P.} \quad \text{Chiang Mai} \quad \text{CLF} \quad \text{that angry very} \]
\[\text{‘#The/That M.P. from Chiang Mai is very angry.’} \]

These examples additionally show that demonstrative descriptions are allowed whenever bare nouns are not; i.e., when the predicate is not unique, such as ‘that M.P. from Chiang Mai,’ but impossible when used to refer to an individual that is known to be unique. Thus, if a predicate is only true for a single individual regardless of context, it will be translated with a bare noun.

3.2 Weak definites

The second use of bare nouns is with weak definites (Poesio 1994; Barker 2005; Carlson, Sussman, Klein & Tzanian 2006), illustrated below:

(7)
\[Sūthēep \text{ phaa Sōmchay pay (thīi) rooy-phayabaan} \]
\[\text{Su.} \quad \text{take} \quad \text{So.} \quad \text{go to hospital} \]
\[\text{‘Suthep took Somchai to the hospital.’} \]

(8)
\[# \text{ Sūthēep phaa Sōmchay pay *(thīi) tīk} \]
\[\text{Su.} \quad \text{take} \quad \text{So.} \quad \text{go to building} \]
\[\text{‘Suthep took Somchai to the building.’} \]

Even if we do now know which hospital Suthep takes Somchai to, ‘hospital’ can be definite in English in such a context and translated with a bare noun in numeral classifier languages. Thus, (8) requires a context to be natural, while (7) does not. The same observation applies to predicates such as listening to the radio and opening the blinds, where the object is a weak definite.

The fact that the uses of unique definites include a context where no unique hospital is required is surprising. In fact, weak definites are surprising in several other respects as well: (Poesio 1994) shows that possessive weak definites are possible in existential sentences, and Carlson et al. (2006) shows that weak definites show the same kind of quantificational variability that indefinites do. They also have a restricted grammatical distribution: they are typically internal arguments,
and often license preposition omission, both indications that they are somewhat incorporated into the predicate. Schwarz (2014) provides an analysis of weak definites which relies on uniqueness relevant to an event, while Aguilar-Guevara & Zwarts (2010) argue that weak definites involve reference to kinds. Setting the question of their proper analysis aside, it is important that weak definites pattern reliably with uniqueness definites in classifier languages in requiring bare nouns.

3.3 Immediate situation definites

The third environment where definite bare nouns must be used in the relevant classifier languages is in immediate situation definites, another term from Hawkins (1978). Like larger situation definites, immediate situation definites rely on shared knowledge between the speaker and hearer, but this knowledge is specific to a particular situation or context. Consider the following examples:

(9) rôt yùu thîi-nâi?
car LOC place-which
‘Where the car?’

(10) māa kamlâj hàw.
dog PROG bark
‘The dog is barking.’

Cars and dogs are only unique relative to specific households or individuals, so the use of a bare noun to refer to these entities assumes a certain amount of familiarity with the speaker’s circumstances. Provided such familiarity obtains, the bare noun can felicitously be used in these contexts. Immediate situation definites occur constantly in daily life, but used in isolation in a linguistics paper, they rely on the imagination of the reader to evoke a suitable context where there is exactly one relevant individual who satisfies the descriptive content of the noun.

3.4 Bridging

The fourth environment where definite bare nouns occur is in some cases of bridging, also called associative anaphora (Hawkins 1978) or inferrables (Prince 1981). Bridging definites are licensed by virtue of their association with a linguistic antecedent, for instance, a possession or authorship relation. Schwarz (2009) shows that only cases of bridging in German pattern licensed by inalienable, part-whole possession pattern as unique definites, while cases of bridging licensed by a producer-product association pattern as familiar/anaphoric definites.\(^3\) The same pattern obtains in

\(^3\) Schwarz reports some variation among specific examples and between speakers. I have not conducted a systematic survey, but the native speakers of numeral classifier languages I have consulted with
Two kinds of definites in numeral classifier languages, as the examples below demonstrate:

(11) rót khan nán thîi thôuk tamrùat sâkât princ mâj.dâj tit satikâo
car CLF that ADV.PAS police intercept because NEG attach sticker
wâj thîi thábìan (#baj nán).
keep at license CLF that
‘That car was stopped by police because there was no sticker on the license.’

(12) ?cì khût wâa klɔɔn bôt nán prí? mâak, mër-wâa khâw câ
Paul thinks COMP poem CLF that melodious very, although 3P IRR
mâj chôɔp nàktêeŋklɔɔn #(khon nán).
NEG like poet CLF that
‘Paul thinks that poem is beautiful, though he doesn’t really like the poet.’

In (11), thábìan ‘license (plate)’ is licensed by virtue of its part-whole relationship with the antecedent rót ‘car.’ This is an instance of part-whole bridging, and a bare noun is possible for the bridged definite. In contrast, nàktêeŋklɔɔn ‘poet’ in (12) is the author of its antecedent klɔɔn ‘poem,’ and a demonstrative must be used.

Schwarz (2009) offers a perspicuous explanation for why these two instances of bridging pattern differently:

...when considering wholes and their parts, it is clear that there is a containment relationship between the two, which in turn ensures that whenever we are looking at a situation that contains the whole, it will also contain the part. This is not the case for the relationship between products and their producers. A situation containing a book does not generally contain the book’s author (p. 54).

So for (11), in any situation where there is a unique car, there will be a unique license plate. Because there is a contextually unique license plate, the bare nouns is available. However, poems do not contain poets, so the poet in (12) is not contextually unique.

The demonstrative that is required for the bridged definite in (11) indicates that ‘that poet’ is an anaphoric definite. This is unexpected because the poet has not been mentioned prior in the discourse, and as we will see in the following section, a prior mention requirement holds for the other cases of anaphoric definiteness. Schwarz presents compelling arguments from German that the ‘producers’ such as the poet in (12) in producer-product bridging are necessarily relational nouns. On the basis of this generalization, Schwarz argues that the indexical argument of anaphoric definites (cf. 20) is satisfied not by an index which identifies the producer, but rather its relatum, the product. While a complete analysis of producer-product
bridging is beyond the scope of this paper, the similarity of the different types of bridging in numeral classifier languages to the different types of bridging in German provides compelling evidence that the two phenomena are closely related.

3.5 Uniqueness and the semantics of bare nouns

Schwarz (2009) proposes the following semantics for unique definite articles:

\[
\text{Unique definite articles (Schwarz 2009: 148)}
\]

\[
[\text{the}_\text{unique}]^g = \lambda s_r. \lambda P : \exists ! x P(x)(s_r). tx[P(x)(s_r)]
\]

Under such a view, definite articles are functions from a situations and a predicate into the unique individual that satisfies that predicate in that situation (cf. Heim 1990; Cooper 1995; Elbourne 2013). The relevant notion of situation is a technical one: situations are parts of worlds, and can be very small, containing only a single individual and a few of their contextually relevant properties (Kratzer 1989, 2007). Noun phrases are interpreted relative to a particular resource situation (\(s_r\)), which serves as their domain restriction. Thus, in the immediate situation definites in (9) and (10), the resource situation of the relevant noun phrases contains a single dog or car. In the part-whole bridging examples such as (11), because the resource situation contains a single car, we can infer that it contains a single license plate as well.

Schwarz extends his analysis to larger situation uses, drawing a parallel between part-whole bridging and relational larger situation definites like mayor, which introduce arguments (e.g. of Oakland) which entail the existence of a unique referent for their predicate. Globally unique situation definites like the sun and the sky are the easy cases, as they are always unique relative to the actual world, of which every actual situation is a subpart. The one class of unique definites which does not naturally fall out of Schwartz’s analysis is weak definites. Schwarz (2009: 73) suggests that weak definites may be instances of kind reference (Dayal 2004), and that uniqueness is licensed by virtue of the uniqueness of a particular kind.

While the logical form in (13) may captures aspects of the semantics of bare nouns in numeral classifier languages, it is not clear where this meaning comes from. Bare nouns lack articles by definition, and bare nouns in these languages allow a range of readings outside of unique definite ones, including kind-level and scopeless indefinite readings (e.g. Yang 2001; Piriyawiboon 2010; Jenks 2011). One possibility is that the unique definite reading arises from a phonologically silent definite article equivalent to (13) (cf. Simpson 2005; Wu & Bodomo 2009). Alternatively, one could attribute the unique definite interpretation to a semantic type-shifting operator (Chierchia 1998; Dayal 2004). Because semantic type-shifts are assumed to be universal, and supplied by UG, the second approach makes an interesting cross-linguistic prediction: If all definite type-shifts are uniqueness
Two kinds of definites in numeral classifier languages

type-shifts, then definite bare nouns should always only allow uniqueness readings.
An alternative proposal adopted by a number of recent authors is that definite readings for bare nouns are instances of contextually-restricted kind reference (Dayal 2011; Jenks 2011; Trinh 2011; Jiang 2012). Under such a view, the bare definite dog would have the interpretation in (14), where DOG represents the dog kind:

\[(14) \quad \text{dog} = \lambda s_r.\text{DOG}(s_r)\]

This analysis builds the idea that nouns in numeral-classifier languages are kind-referencing, and hence that numeral classifiers are needed in order to pull individual atoms from the kinds (Krifka 1995, 2003; Chierchia 1998). As a kind is the largest set of individuals which satisfies a certain property within a world or situation, bare nouns would be expected to have unique definite interpretations.

There are two challenges for this kind-based view of definiteness. The first is that the kind-based analysis above is not presuppositional. Yet bare nouns in opaque contexts such as negation nevertheless allow two readings, one of which seems to include an existence presupposition:

\[(15) \quad \text{phôm m̀aj chòp m̀aa.} \quad \text{I NEG like dog} \]

i. ‘I don’t like dogs.’
ii. ‘I don’t like the dog(s).’

Similarly, Russell (1905)’s King of France sentences and their negation induce the same uneasiness in Thai that their English equivalents do:

\[(16) \quad \# \text{kàsàt hèe'y faràngsèt (m̀aj) hùa-láan.} \quad \text{king CLF France NEG head-bald} \]

‘The king of France is (not) bald.’

I do not think that the ambiguity in (15) or the apparent presupposition failure in (16) are disastrous for the kind-based view. For the first sentence, the two readings could be derived from two different resource situations. If the situation is one that contains different kinds of animals, the first interpretation obtains. However, if we are discussing a salient dog or plurality of dogs, the de re reading emerges. In the second sentence, the apparent presupposition failure is captured by virtue of the fact that the ‘King of France’ kind in the actual world lacks any individuals in its extension (or perhaps does not exist).

The second challenge faced by a kind-based analysis of definite bare nouns is typological: the four environments for unique definites do not pattern together in all classifier languages. In Cantonese, bare nouns can be used for weak definites and larger situation uses, but not for immediate situation uses or part-whole bridging,
which require a classifier.4 Such a restriction corresponds to a natural border in the landscape of uniqueness: while larger situation definites and weak definites can occur without context, immediate situation definites rely on specific pragmatic or linguistic context. This observation follows once uniqueness definites are further split into two subtypes: general definites, comprised of larger situation uses and weak definites, and specific definites, comprised of immediate situation uses and part-whole bridging. If we take general definites to correspond to instances of kind reference, following Aguilar-Guevara \& Zwarts (2010), then immediate situation uses must involve more than kind reference, and hence the kind-based denotation in (14) is insufficient.

In summary, Schwarz 2009’s situation-based analysis of unique definites can be extended to numeral classifier languages tout court, with weak definites being an instance of kind reference. Under such an analysis, the definite interpretation can be attributed to a null determiner or type-shift. Yet another possibility for analyzing unique definites would be to analyze them as instances as kind reference. However, the latter view must account for the ambiguity of bare nouns in opaque contexts and further cross-linguistic differences in the distribution of definite bare nouns in numeral classifier languages.

\section{Indexicals as anaphoric definites}

This section surveys environments in which definite descriptions can be used felicitously in a language like English but which cannot be translated with bare nouns in numeral classifier languages. To my knowledge, the existence of such environments has not been previously noted. In these environments, languages like Thai and Mandarin require the use of either a pronoun or a demonstrative. These environments are all discourse anaphoric, or strongly familiar in the terminology of Roberts (2003), meaning that they all make reference back to an explicit linguistic antecedent.5 These environments exhibit substantial overlap with the environments for E-type uses of pronouns, including classical cases of donkey anaphora.

\subsection{Indexical definites as E-type anaphora}

The narrative sequence below is an instance of E-type anaphora, the label given to apparent instances of binding without c-command by Evans (1977, 1980). As the

4 These facts are detailed in ongoing work, Jenks 2015. Suggestions to similar effects can be found in Li \& Bisang 2012 and Li 2013.

5 The one exception to this generalization is the producer-product bridging examples discussed in the previous section. I will not deal with such cases here, but recall the suggestion by Schwarz (2009) that in such cases the linguistic antecedent is the relatum of the bridged definite.
example shows, in such contexts numeral classifier languages require a demonstrative
description or pronoun (null or overt)\(^6\) as anaphora to linguistic antecedents; bare
nouns cannot be anaphoric to indefinites:

\[(17)\] a. \text{m1awaan phôm c̤ k̄p nákrian khon niŋ}.
Yesterday 1ST meet with student CLF INDEF
‘Yesterday I met a student.’

b. i. \text{(nákrian) khon nán / (kháw) chalàat m̤ák}.
student CLF that / 3P clever very
‘That student/(s)he was very clever.’

ii. \# nákrian chalàat m̤ák.
student clever very
‘Students are clever.’

These examples are famously problematic for purely quantificational theories of
indefinites, in that the indefinite seems to bind a pronoun (or demonstrative) beyond
its scope. Such examples are among the major motivations for dynamic approaches
to semantics (Kamp 1981; Heim 1982), in which indefinites assign indices to novel
discourse referents, contextually salient individuals which can be referred to by
subsequent definite noun phrases, such as definite descriptions and pronouns. In
numeral classifier languages, indexical expressions such as pronouns and demonstratives
must be used in such discourse anaphoric contexts, providing relatively
straightforward support for dynamic approaches. The novel finding is that bare
nouns in numeral classifier languages cannot be used as discourse anaphora.\(^7\) In
such an environment, the bare noun is restricted to a generic interpretation.

The restriction on anaphoric bare nouns holds regardless of whether an individual’s
identity is known. Translations of Geach (1967)’s examples of intentional
identity illustrate this observation (modeled after Elbourne 2005, p. 6):

\[(18)\] a. \text{phûu-chaay khon niŋ khâa Suthêep}.
man CLF INDF kill Suthep.
‘A man, killed Suthep.’

\(^6\) Here and below, both overt and null pronouns are possible. However, null and overt pronouns have
different meanings, as has been shown by Kurafuji (1998, 1999). See section 4.3 for discussion.
\(^7\) This claim needs qualification: in longer narratives, it is possible to find a bare noun being used
in putatively anaphoric contexts. Typically, such uses typically commence after an individual has
been established and it is clear that they are the only individual of the relevant type, i.e., they are
unique. While I do not have space to illustrate such cases, I think that they ultimately provide further
support for the generalization proposed in this paper in that it is only once uniqueness has been
clearly established for a particular noun that the bare noun can be used. My hunch is that these uses
are essentially equivalent to proper names in languages like English.
b. i. tamruat sōgsāy wāa phūu-chaay khon nān / (khāw) dāy-ráp
 police suspect COMP man CLF that / 3P receive
 bàat-cèp tōn-nān
 injury time-that
 ‘Police suspect that that man / he was injured at the time.’
ii. tamruat sōgsāy wāa phūu-chaay dāy-ráp bàat-cèp tōn-nān.
 police suspect COMP man receive injury time-that
 ‘Police suspect that a man k was injured at the time.’

As before, indexical definites can be used in such an example, but bare nouns cannot. Interestingly, when a bare noun identical to the antecedent is used in these examples, it implies the existence of a third man distinct from the murderer and Suthep.

One possible explanation for why anaphoric bare nouns seem to be impossible in the examples above is that the uniqueness presupposition which is characteristic of bare nominal definites is not met. For example, the indefinite in (17) implies that other students are around, and at least two men are present in (18). However, the same facts hold for anaphora to universal quantifiers, as in the following example:

(19) a. nākrian thúk khon sōp tōk mīawaan.
 student every CLF test fail yesterday
 ‘Every student failed the test yesterday.’

 b. i. daŋ-nān nākrian phūak nān / (phūak-khāw) kūo-lōoi phīt-wāy
 so student GROUP that / GROUP-3P thus disappointed
 māak.
 very
 ‘So the students / they were very disappointed.’
ii. daŋ-nān nākrian kūo-lōoi phīt-wāy māak.
 so student thus disappointed very
 ‘Students are disappointed.’

Plural anaphora in Thai typically make use of a special plural morpheme pʰûak, roughly ‘group’, which can be anaphoric to a universal quantifier, as (19b-i) shows. Yet while a bare noun can freely refer to a plurality, and often does, a bare noun cannot be used as an anaphor to a universal quantifier. This observation defuses the uniqueness-based explanation for the unavailability of anaphoric bare nouns in examples (17) and (18); there is only one contextually relevant group of students in (19), and a bare noun still cannot be used to refer back to them.
4.2 The indexical semantics of familiar definites

Schwarz (2009) argues that the semantics of anaphoric definites are identical to the semantics of unique definites with the exception of an additional argument, a dynamic index that picks out a discourse referent with which is identified with the unique individual denoted by the definite:

\[
\text{[the anaphoric]}^g = \lambda s_r. \lambda P. \lambda y : \exists ! x P(x)(s_r) \land x = g(y). t x [P(x)(s_r) \land x = g(y)]
\]

Requiring that familiar definites take a dynamic index as an argument connects with the observation that the indexical expressions which occur as familiar definites can also be used for direct ostension, in which case pointing serves as the index and its assignment (Roberts 2002). The presence of an indexical argument on familiar definites is expected in dynamic approaches to their semantics, which take E-type anaphora to achieve reference by virtue of an index interpreted relative to a contextually supplied assignment function. The case of a plural anaphor to a universal or proportional quantifier as in (19) can be given a similar analysis, where the plurality which is identified by the domain restriction of the universal quantifier is accessible to subsequent reference.

Some approaches to definiteness eschew the indices which are necessary to make dynamic semantics work (e.g. Elbourne 2013), relying exclusively on situationally-restricted uniqueness. Under such a view, if the situation is small enough, it will only contain that individual which was identified by the earlier expression. Thus, the logical form of the subject of *The student was clever*, say, as a continuation to the English gloss of (17a) would be *the unique students in s_1*, where s_1 is the situation described in the preceding clause.

However, we have already seen that bare nouns cannot be used anaphorically in these contexts, despite the fact that bare nominal definites are freely allowed in other contexts licensed by uniqueness. This is unexpected for the idea that all definites are fundamentally uniqueness definites. So, I conclude, some definite expressions in numeral classifier languages are fundamentally indexical, and these are the expressions which occur with familiar or anaphoric uses of definites.

4.3 Pronouns of laziness

In the anaphoric contexts above, bare nominals are prohibited, while demonstratives and both overt and null pronouns are available. However, in ‘pronoun of laziness’

8 For now, I am treating pronouns and both distal and proximal demonstratives the same, with (20) as their semantic core. I assume that they are further distinguished by additional presuppositions that each lexical item introduces. For example, (Roberts 2004) proposes that pronouns include additional salience presuppositions.
contexts, such as paycheck sentences (Karttunen 1969), null pronouns pattern with bare nouns. More specifically, indexical definites in paycheck sentences pick out the individual referred to by the antecedent, not its sense, while bare nouns and null pronouns pattern together in permitting the covarying or sloppy readings that these sentences are famous for:

(21) a. phûu-chaai thîi fâak ṣṣon-dian wáy kàp mia chalåat kwàa...
man REL entrust salary PRFV LINK wife smart CMPR

‘The man_i who entrusts his_i paycheck to his wife is smarter than...’

b. i. # phûu-chaai thîi fâak ṣṣon-dian kôôn nán / man wáy kàp
man REL entrust paycheck CLF that it PRFV LINK
mia-nôoyj.
mistress

...the man who entrusts [that paycheck]_/it_/ to his mistress.’

ii. phûu-chaai thîi fâak (ṣṣon-dian) wáy kàp mia-nôoy.
man REL entrust salary PRFV LINK mistress

...the man_j who entrusts his_j paycheck to his mistress.’

(22) a. pii-níi naayók pen samâachik phûa-Thai.
year-this Prime Minister PRED member pro-Thai.

‘This year the prime minister_i is a pro-Thai party member.

b. i. # Piî-nâa khôw / naayók khon nân cà pen samâachik-P.Ch.P.
year-next 3P / P. M. CLF that FUT PRED member-democrat

‘Next year he_i / that P.M._j will be a democratic party member.’

ii. Piî-nâa (naayók) cà pen samâachik-P.Ch.P.
year-next Prime Minister FUT PRED member-democrat

‘Next year he_j will be a democratic party member.’

In these contexts, the same indexical expression which was required in the familiar contexts above must receive a strict interpretation: in (21) the paycheck given to wife and mistress is literally the same paycheck, even if given by a different man, and the Prime Minister who will be in a different party next year in (22) must be the current Prime Minister. In these contexts, however, both bare nouns and null pronouns allow the sloppy interpretation, where the paycheck or Prime Minister changes with the situation.

Kurafuji (1998, 1999) observes the same contrast for null versus overt pronouns in Japanese. He analyzes overt pronouns in Japanese as dynamically bound indexicals, consistent with the analysis here, while null pronouns are analyzed as
Two kinds of definites in numeral classifier languages

functions from situations or individuals to the maximum individual in that situation, his ‘E-type pronouns’, following Chierchia (1992, 1995).9

If Japanese patterns with Thai and Mandarin in having two kinds of definite expressions, the different interpretations of null versus overt pronouns identified by Kurafuji are just special cases of the two kinds of definiteness in numeral classifier languages. Crucially, the functional semantics that Chierchia (1992, 1995) proposes for sloppy interpretations of pronouns and definites can be reduced to the uniqueness-based semantics of bare nouns, functions from situations to the maximal, or unique, individual in the given situation.10

So the noun ɲɔ̃n-dian ‘salary’ and its null pronominal equivalent in (21) are interpreted as functions from situations into the (unique) paycheck in the relevant situation. All that is needed to ensure the sloppy reading in the second clause is that the two occurrences of the noun are interpreted relative to two separate situations.11 Similarly, naayók ‘Prime Minister’ in (22) is interpreted as a function from situations to the unique P.M. in that situation. Because the two clauses are interpreted at different times, hence, different situations, the noun can refer to two distinct individuals. In contrast, the indexical expression in both examples must refer to an existing discourse referent. In both examples, the only available discourse referent is the individual introduced in the first clause. As such, using the indexical expression in this environment results in the somewhat bizarre strict reading of the indexical definite.

However, recall that null pronouns are possible in all E-type environments, including contexts that prohibit bare nouns such as the narrative sequences in section 4.1. To account for this availability of null pronouns in such contexts, Kurafuji proposed that null pronouns are ambiguous between indexical and functional interpretations.

I can see two ways of accommodating Kurafuji’s ambiguity proposal in light of the facts described above. The first is to analyze the apparent ambiguity null pronouns as resulting from a syntactic ambiguity between a bare noun or a pronoun which is concealed by NP-ellipsis. Such an approach has the benefit of not positing

9 There is a terminological issue here, as Chierchia and Kurafuji use ‘E-type pronoun’ more restrictively than many authors to refer exclusively to ‘pronouns of laziness,’ those pronouns and definite descriptions with the functional meanings that result in sloppy readings.
10 A similar proposal has been made for German pronouns, which Grosz & Patel (to appear) argue are parasitic on the two types of definite articles: personal pronouns are the anaphoric version of German weak articles while demonstrative pronouns are the anaphoric version of German strong articles.
11 One interesting argument for this kind of semantics is that the two occurrences of the noun can have different interpretations with respect to plurality. Chierchia (1995: 115) notes that this is a signature property of ‘E-type pronouns’ (pronouns of laziness). Thus, the truth of example (21) is not affected by how many paychecks the two men give to their wives or mistresses. As bare nouns in classifier languages are number-neutral, this follows directly.
ambiguity in any lexical expressions, shifting the burden of explanation for ambiguity to the syntactic component. Under such a view, it can be maintained that situational-binding is never used in anaphoric environments, possibly prohibited by some version of Maximize Presupposition (Heim 1991). The second way of accommodating the apparent ambiguity of null pronouns would be to admit that uniqueness definites can be used in familiar contexts, but there are discourse restrictions on bare nouns which do not apply to null pronouns, even though they can both receive functional, uniqueness-based interpretations. Recall that bare nouns qua unique definites are often discourse-new, in the sense of Prince (1992); it may be that there is a novelty condition on bare nominal definites akin to the one proposed for indefinites by Heim (1982). I do not know of any empirical fact which could decide between these two analyses, but the former has the advantage of requiring no additional stipulations besides that any NP can be completely elided in these languages.

4.4 Donkey sentences

The last use of familiar definites is as donkey anaphora (Geach 1962). As in the other cases of E-type anaphora, donkey anaphora seem to be bound by an earlier indefinite despite failing to occur in its scope. Donkey anaphora are distinguished from the earlier cases of E-type anaphora in that they receive covarying interpretations relative to a c-commanding operator. In numeral classifier languages, donkey anaphora pattern as familiar definites, and can only be realized as indexical expressions:

(23) [chaawnaa thûk khon thîi mii khwaai tua nîn] tìi khwaai tua nán

farmer every CLF that have buffalo CLF INDEF hit buffalo CLF that

/ (man)₁

/ it

‘Every farmer that has a buffalo hits it.’

(24) [chaawnaa thûk khon thîi mii khwaai tua nîn] tìi khwaai₁₁/₁ genotype

farmer every CLF that have buffalo CLF INDEF hit buffalo

‘Every rice farmer that has a buffalo hits buffalo.’ (a generic claim)

When bare nouns can felicitously occur in the position of a donkey anaphor, they can only receive generic interpretations. While such a generic reading is certainly compatible with each farmer beating his own buffalo, such a state-of-affairs is not entailed by the sentence in (24).

From the perspective of dynamic semantics, the requirement that donkey anaphora be indexical expressions is as expected. Dynamic theories take donkey anaphora to be bound dynamic indices whose assignment varies along with the c-commanding quantifier. Such theories and deal with the lack of c-command in donkey sentences.
Two kinds of definites in numeral classifier languages

by enriching the semantics of connectives such that the information introduced by the first conjunct can dynamically bind variables in the second (e.g. Groenendijk & Stokhof 1991; Chierchia 1995).

As before, uniqueness-based theories incorrectly predict that definite bare nouns in classifier languages should be able to occur as donkey anaphora. To see why this is so, consider the situation-based truth conditions for donkey sentences proposed by Elbourne (2013); the donkey anaphor is underlined:

(25) a. Every man who owns a donkey beats the donkey.
 b. In every situation s_1 where a man owns a donkey, there is another situation s_2, s_2 a subpart of s_1, in which the man in s_2 beats the unique donkey in s_2.

Here the heavy lifting is done by the part-whole relationship between situations, entailed by the semantics of the universal quantifier. Because the unique donkey in the main clause is contained in a situation (s_2) which is part of a larger situation (s_1) in which a man owns a donkey, the beaten and owned donkeys must be the same.

However, under this analysis we expect that because the bare noun in numeral classifier languages means ‘the unique P in s,’ it should allow covarying readings, contrary to fact. Furthermore, the observation that indexical expressions are required in such examples supports the idea that donkey anaphora are interpreted with the aid of semantic indices; a similar argument is made on the basis of similar facts in signed languages by Schlenker (2011).

It is worth mentioning that donkey sentences involving indistinguishable participants — including sage-plant sentences and bishop-sentences (e.g. Heim 1990; Kadmon 1990; Elbourne 2010) — behave as expected on the basis of the generalization above: they require indexical noun phrases and prohibit bare nominals. Of course, is not surprising that these examples behave as familiar rather than unique definites given that they are the limiting cases for uniqueness theories.

However, some donkey sentences do seem to allow bare nouns as donkey anaphora. In particular, donkey sentences which have been observed to favor weak or existential readings allow bare nominals (cf. Chierchia 1995: 63):

(26) \[\text{thúk khoŋ \ thiŋ miŋ \ bát-khredit}_1 \ \text{chài bát}_1 / (??\text{man}) \ cāŋy-ŋkən. \]
\text{every CLF:person REL have credit-card use card/ \ it \ pay}

‘Everyone who had a credit card used it to pay.’

The underlined donkey anaphor in (26) is weak in the sense that each person only needs to use one credit card for the sentence to be true, even if they have several credit cards in their wallet. Thus, the indefinite and donkey anaphor seem to be bound by a single existential quantifier.

12 I have simplified Elbourne’s analysis for purposes of space. I hope I have not misrepresented that analysis in so doing.
While the literature on first blush this sentence is a ray of hope for the uniqueness-based approach to donkey anaphora. However, the bare noun in the second clause of (26) is not actually a donkey anaphor; it is not bound. That is to say, the truth of this sentence does not depend on whether people pay the bill with their own credit cards. Instead, the truth conditions are closer to the sentence *Everyone who had a credit card used a credit card to pay*. While people tend to pay with their own credit cards, these sentences allows for the two credit cards to be different.

Noting similar facts, Kurafuji (1998, 1999) proposes that the weak reading of the null pronoun is due to a kind-based interpretation for the null pronoun in object position. This would be a straightforward extension of the analysis of unique definites described in section 3.5 and extended in section 4.3 to null pronouns. However, the larger context of Kurafuji’s work is Chierchia’s (1995) proposal that functional definites produce strong readings of donkey sentences while indexical definites produce weak readings. While I have not systematically explored the strength of the readings for sentences like (23), the fact that bare nouns are unavailable as donkey anaphora despite freely occurring in pronoun of laziness contexts throws a wrench in the general idea that strong readings of donkey sentences are derived from functional readings of definites.

5 Conclusion

The distinction in definite semantics observed by Schwarz (2009) for German articles can be extended to different classes of nominals in numeral classifier languages despite the fact that these languages lack definite articles. While bare nouns are used for unique definites, familiar definites must make use of indexical nominals, including demonstratives and overt pronouns. In the later part of this paper, we saw that this generalization accounted for the distinction between functional and indexical definites proposed by Chierchia (1992, 1995), and offered an explanation for Kurafuji’s (1999) observation that null versus overt pronouns have different semantic properties, with null pronouns as the pronominal correlate of bare nouns.

With Schwarz (2009), I conclude that both familiarity and uniqueness are necessary components in an empirically adequate theory of definiteness. In addition, the semantically contentful notion of ‘familiarity’ might be just discourse anaphoricty, modeled with dynamic indices. Numeral classifier languages provide striking confirmation for a semantics with indices given that the expressions which are used in familiar contexts are the same expressions that can be used for pointing, as in signed languages (Schlenker 2011). Finally, the uniqueness-based approaches to donkey anaphora proposed by Heim (1990) and Elbourne (2013) do not predict the right distribution of definite expressions in these languages, suggesting that nominal binding situation via situation variables is unavailable in natural languages.
Two kinds of definites in numeral classifier languages

References

Jenks, Peter. 2015. Definiteness without articles in numeral classifier languages. UC Berkeley.

Two kinds of definites in numeral classifier languages

Peter Jenks
1203 Dwinelle Hall
UC Berkeley
Berkeley, CA 94720-2650
jenks@berkeley.edu