Two kinds of definites in numeral classifier languages

Peter Jenks
UC Berkeley

1. Introduction

Main Claim: Some numeral classifier languages—e.g., Thai, Mandarin—grammatically distinguish two types of definiteness despite lacking definite articles:

• Uniqueness definites are realized as bare nouns.
• Anaphoric (or familiar) definites are realized as demonstrative descriptions.

2. Background

Bare nouns are claimed to have definite interpretations in many classifier languages (all examples are in Thai):

(1) mān kom láy hawn. ‘The dog is barking.’
 e.g. Thai (Piıyawiboon 2010), Mandarin (Cheng & Sybesma 1999), Japanese (Kurarufi 2004).
 The nature of this definite interpretation has not been systematically explored.

Demonstratives in classifier languages are claimed to occur in definite environments (e.g. Chen 2004 for Mandarin); the exact conditions for this distinction are unknown.

Demonstratives are not equivalent to definite articles, as shown by the consistency test of Löbner (1985):

(2) mān tān nān nān yèu tān mān mālāi dān nān yèu tān mān dog CLF that sleep IMP but dog CLF that NEG sleep IMP ‘That dog is sleeping but that dog isn’t sleeping’

Based on these facts, it is often claimed that “classifier languages do not mark definiteness” (e.g. Jiang 2012:15).

Recent work has established a robust contrast between uniqueness and familiarity definites across languages:

• Schwarz (2009) shows that definite articles in German occur in a strong and a weak form which track uniqueness vs. familiarity, respectively.
• Arkoh and Mathewson (2013) show that the Fante determiner na only occurs in familiar environments.
• Schwarz (2013) identifies several other languages with a similar contrast.

(3) [thēmān P = x, λP = Θ : P(x) ∧ P(λx)]

While anaphoric definites introduce an additional argument, an index that picks out a discourse referent (p. 114):

(4) [θēmān naθān P = x, λP = Θ : P(x) ∧ P(λx)] A = g(y)

My proposal: Definite bare nouns in classifier languages include null determiner or type-shift equivalent to (3), while demonstratives in numeral classifier languages have a denotation similar to (4).

3. Bare nouns as uniqueness definites

Bare nouns occur in four putatively definite environments in numeral classifier languages:

• Pragmatically supplied uniqueness is relevant to all of these environments, albeit in slightly different ways.

1. General situation definites occur in environments where the referent is known to be unique due to general or world knowledge:

(5) duen,caν sawaau mdāk
 moon bright very ‘The moon is very bright.’

2. Weak definites are environments with fungible reference; i.e., where uniqueness is irrelevant (Carlson et al. 2006):

(a) Suthep phao Somchhai pai (thīi) royp-phaaybān
 S. take 5. go to hospital

‘Suthep took Somchai to the hospital.’

(b) Suthep phao Somchhai pai *(thīi) nīk
 S. take 5. go to building

#Suthep took Somchai to the building.’

3. Specific situation definites draw on specific, shared knowledge between speaker and hearer:

(7) rēt yūi thīi nāνī? car LOC where
 ‘Where’s the car?’

4. Part-whole bridging is a subclass of associative anaphora which patterns with uniqueness definites in German; they also occur with bare nouns in numeral classifier languages:

(8) rōt khān nāνī thīi tōmāat sākāth mālāi dīt
 car CLF that PERF police cite because NEG stick sākāth wīi thīi thūbān.

‘That car was intercepted by the police because there wasn’t a sticker on the license plate.’

In contrast, production-proces bridging patterns with familiarity definites in both German and classifier languages.

Cantonese provides evidence that these four environments should be split into two further classes:

• General definites: larger situation definites and weak definites
 ➔ Realized with a bare noun in Cantonese.

• Specific definites: specific situation definites and part-whole bridging
 ➔ Realized with a bare classifier in Cantonese.

If bare nouns in clf. languages are kinds (Chierchia 1998), general definites are instances of kind reference, while specific definites must be attributed to a null determiner or type-shift equivalent to (3).

4. Indexicals as anaphoric definites

Demonstrative descriptions and pronouns (indexical definites) are infelicitous in all of the environments in 5-8.

Prior mention or ostension are the necessary and sufficient conditions for indexical definites. Conversely, bare nouns are judged infelicitous in indexical definite environments.

Prior mention necessitates indexical definites:

(9) a. miwām phān caa kap [nakriān khon nięg] yesterday 1p.sg meet with student CLF INDEF

‘Yesterday I met a student.’

b. [nakriān] khon nięg [fāhāw] clābat mdāk
 student CLF that 3p smart very

‘The student/she was very smart.’

• #nakriān, clābat mdāk

‘Pronouns of laziness’ contexts show that indexicals refer to the specific discourse referent of the antecedent, not its sense:

(9) a. pi-nīi [nāykāy], pen samdāchik-phāi-thāi
 next this P.M. PRED party-Pro-Thāi

‘This year the PM is Pro-Thāi.’

b. pi-nīi [jōnāy], pen samdāchik-phāi-Ch.P.
 next.year.P.M. CLF that Fut.PRED party-Dem.

‘Next year that specific P.M. will be a Democrat.’

• #nakriān, clābat mdāk

5. The problem for uniqueness-only approaches to definiteness

Elbourne 2013 enriches uniqueness-based analysis of definiteness with the machinery of situation semantics in an attempt at a unified analysis of definiteness.

Covarying interpretations of definites for Elbourne rise purely through situation-variable binding:

(11) a. Every man who owns a donkey beats the donkey.
 b. In every situation s, where a man owns a donkey, there is another situation ṡ where ṡ is a subpart of s and in ṡ a man beats the unique donkey in s.

Because bare nouns in classifier languages refer to the unique individual in a specific situation, Elbourne’s analysis clearly predicts that definite bare nouns in classifier languages should allow donkey readings, contrary to fact.

Bishop sentences have also been argued to pose problems for Elbourne’s analysis (Krolf, Elbourne 2008).

Bishop-like sentences also require indexical definites in numeral classifier languages:

(12) [bîn klub tān tān mīi oon] cā mīi oon ikh baj bu. every.FUT have basin + CLF that yūi khān khān oon *(baj nāνī).

‘sitting LOC next.to basin CLF that Fut have a basin with another water basin sitting next to that basin.’

These data can be easily accommodated by dynamic approaches.

6. Conclusion

Summary:

• Numeral classifier languages such as Thai distinguish unique and anaphorically licensed definite descriptions.
• Unique definites must be realized by bare nouns.
• Anaphoric definites must be realized by indexicals.

Why these observations matter:

• Evidence that definiteness is semantically diverse, mixed approaches are needed.

• Familiality and uniqueness are both independently necessary components of semantic theory.

• Provides support for dynamic approaches to donkey anaphora over situation-based approaches.

References and acknowledgments

THANK YOU to Vichayathorn Branitaya and Retana Putmanrat for Thai judgments, to I-Hsuan Chen for Mandarin judgments, and Herman Leung for help with Cantonese.

Two kinds of definiteness in classifier languages. Elbourne, P. SALT 25.