Phonetically Motivated Parallels
between Child Phonology and Historical Sound Change

Mel Greenlee
University of Northern Iowa

John J. Ohala
University of California, Berkeley

ABSTRACT

There is a long history of speculation in linguistics about the role of children, i.e., first language learners, in sound change. Many assume that the child is the initiator of sound change. More recently, however, important differences have been brought to light between child language phonology and diachronic phonology, thus calling into question the role of the child language learner in sound change. In this paper, we document several cross-language parallels between phonological processes exhibited by children learning their language and in “adult” phonology, i.e., allophonic variation, diachronic processes, dialect variation, etc. All are processes which can be explained phonetically by reference to acoustic-auditory factors. We argue, however, not that the “adult” sound patterns originated in child phonology, but that both stem from the same underlying physical phonetic causes, i.e., that both child and adult create such sound patterns independently, because they both possess the same phonetic apparatus. The question “who initiates sound change?” cannot, therefore, be answered by citing parallels, or lack of them, between child and adult phonology. Rather, we need to know who is it, child or adult, that is more likely to have his/her pronunciation mistakes copied by others, in this way leading to a pronunciation change characteristic of a whole linguistic community?

INTRODUCTION

The role of children in linguistic change has been of interest to philologists for at least 100 years (Schleicher 1861–2, cited in Drachman 1978). Grammont (1933) viewed children’s linguistic behavior as a microcosm of historical change. Jakobson (1968) posited similar structural bases for both child and adult phonology. Stampe (1969 and 1972) attributed cross-linguistic similarities in phonological change to innate
processes which all children bring to the task of language acquisition. In Stampe's view, (like Grammont's), the child had the role of prime mover in phonological change; similarities across languages in historical sound change could be at least partially attributed to the child's "mistake" in learning.

Although Stampe and his predecessors emphasized the global similarities between sound change processes in acquisition and those found in language history, recent studies of children's phonological development (such as Ferguson and Farwell 1975, Ferguson 1976, or Priestly 1977) have stressed the diversity of strategies which children may bring to the task of acquiring their native language. Just as differences between children acquiring the same language have been pointed out, differences between the phonological processes found diachronically and those used by children have also been noted. For example, Vihman (1978 and 1979) and Cruttenden (1978) have observed that consonant harmony processes, which occur in children's early phonologies, may be quite rare in adult language. Drachman (1978) concluded that these and other dissimilarities were such that they would argue against the role of children as initiators of phonological change: "The role of primary acquisition in language change seems to have been exaggerated."

We believe that both children and adults may be responsible for the type of phonetic variation that can lead to sound change. While there are considerable differences in both developmental and diachronic sound shifts, there are nevertheless important similarities. These similarities should not be discounted, since they may potentially contribute to more "coherent" explanations of the origins for phonological change. See the examples provided further below.

As a basis for the discussion to follow, we assume a model of phonetically-caused sound change recently elaborated by Ohala (1974 and 1975) and Hombert, Ohala, and Ewan (1979). The model attempts to show how the physical constraints of the speech transmission and reception systems can leave their imprint on speech via sound change. In this paper, we focus only on sound changes (for the moment, using this as a cover term which also includes the kind of sound substitutions children make) which can be accounted for by the process of "[faulty] acoustic imitation" (Sweet 1891; Passy 1890).
Briefly, in faulty acoustic imitation, the listener confuses a sound or a group of sounds with items which are perceptually similar; a sound change may arise from this when the hearer takes on the speaker's role, incorporating his misperception or misinterpretation into his own articulation. Ohala (1975 and 1978) and Ohala and Lorentz (1977) have described the relevance of acoustic imitations in explaining synchronic and diachronic sound patterns. This misperception process can also provide insight into parallels between children's acquisition and adult language, since we assume that within certain developmental limits, the ability of children to make acoustic differentiations of the speech signal is similar to that of adult listeners (Eisenberg 1976; Kuhl 1979).

It should be emphasized that this model is intentionally incomplete in that it only attempts to account for "changes" that occur between a speaker and a hearer. Other models, presumably sociolinguistic ones, will have to be invoked to account for the transmission of the sound change once it has been initiated. This limitation has the advantage, however, of permitting us to duplicate in the laboratory the same type of perceptual misapprehensions that have occurred diachronically (Winitz, Scheib, and Reeds 1972; Wright 1975 and 1979; Javkin 1976; Ohala, Riordan, and Kawasaki 1978; Kawasaki 1978; Janson 1979).

In the following sections, we will cite some of the evidence we know of which suggests that certain sound changes are very common cross-linguistically, both in adult language data and in child language. The "adult" language data which we will cite include instances of diachronic sound change, as well as synchronic alternations and dialect variation. We must concede in advance that cross-linguistic data on children's speech are often sparse and only suggestive. In some cases, we are only able to cite child language data from one language, but in these cases we think the unusual character of the processes guarantees that, like the other cases, these represent parallels that cannot have arisen by chance.

In each case, we will first cite the evidence from sound change in adult language ("adult language data"), then, the child language data, and, finally, offer some brief remarks about the phonetic basis of the processes.
STABILITY OF NASAL CONSONANTS

Adult Language Data

A casual inspection of some of the accounts of the phonological history of various language families (e.g., Meillet 1964; Guthrie 1967–70; Chen 1973) provides ready justification for comments such as Ferguson’s (1975) that initial nasals are “astonishingly stable,” and that in some language families, “cases can be found in which almost all of the consonant system has changed while the initial nasals remain.”

Child Language Data

Diary studies of children’s acquisition have usually shown that nasal consonants are separated from oral consonants, especially oral stops, at a very early age. Jakobson (1968) hypothesized that the distinction between oral and nasal consonants would be among the first consonant contrasts to appear in children’s speech. Table 1 summarizes child language data from several studies, representing acquisition data for a variety of languages, on the mastery of selected consonants. Most of the child language data are drawn from ‘diary’ or case-study data collected over a long period of time (e.g., Vanvik); for some children, sound-mastery was examined synchronically at a particular age (e.g., Apronti). Although it is difficult to compare data collected using such different methods, nevertheless, the relative stability of nasal consonants in children’s early production is clearly observable. From the diary data, it can be observed that ages cited for production of nasals and stops are nearly always earlier than those cited for fricatives. The Velten data are a notable exception. From the cross-sectional data, it can be observed that while stops and nasals are generally included among the inventory of sounds produced correctly between 1;6 and 2 years, fricatives may still be unstable at this stage.

Additional evidence on the relative stability of nasals in children’s early speech comes from large-scale cross-sectional studies of pre-school children, such as those by Olmsted 1971 (for English), Yasuda 1969/70 (for Japanese), or Martinet 1974 (for French): nasal consonants are rarely a source of major errors by about 3 years of age. It is also significant that in American schools, nasal consonants are almost never listed as sounds misarticulated consistently by school-age children (Carrell 1937;
Table 1

Children's Mastery of Consonant Types: the Early Emergence of Nasals

<table>
<thead>
<tr>
<th>Language</th>
<th>Source</th>
<th>Stages</th>
<th>Nasals</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>O'Connor (1973)</td>
<td>دال (1.0)</td>
<td>د (1.5)</td>
<td>x (2.0) f (2.3)</td>
</tr>
<tr>
<td>English</td>
<td>Valian (1963)</td>
<td>p/b/d (1.1)</td>
<td>-</td>
<td>x (1.0) f (1.2)</td>
</tr>
<tr>
<td>Estonian</td>
<td>Bering (1971)</td>
<td>t (1.7)</td>
<td>-</td>
<td>f (1.0)</td>
</tr>
<tr>
<td>Hindi</td>
<td>Sreeraman (1974)</td>
<td>p (1.0)</td>
<td>-</td>
<td>i (1.0)</td>
</tr>
<tr>
<td>Japanese</td>
<td>Nakazawa (1972, 1974)</td>
<td>b/d/g (0-1.8)</td>
<td>-</td>
<td>x (2.0)</td>
</tr>
<tr>
<td>Norwegian</td>
<td>Varvik (1973)</td>
<td>b (1.0)</td>
<td>-</td>
<td>f (1.7)</td>
</tr>
<tr>
<td>Russian</td>
<td>Tunin (1973)</td>
<td>b (1.0)</td>
<td>-</td>
<td>x (1.0)</td>
</tr>
<tr>
<td>Spanish</td>
<td>Pintosmuth (1920)</td>
<td>p (1.0)</td>
<td>-</td>
<td>x (1.0)</td>
</tr>
<tr>
<td>Tswana</td>
<td>Jure (1977)</td>
<td>p (1.0)</td>
<td>-</td>
<td>x (1.0)</td>
</tr>
</tbody>
</table>

2. Data considered synchronically (cross-sectional data)

<table>
<thead>
<tr>
<th>Language</th>
<th>Age</th>
<th>Source</th>
<th>Stages</th>
<th>Nasals</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czech</td>
<td>1.5-1.7</td>
<td>Pater (1968)</td>
<td>p, k</td>
<td>m, n, h</td>
<td>unstable, except h</td>
</tr>
<tr>
<td>Danish</td>
<td>2.0</td>
<td>Ahrens (1969)</td>
<td>p, b, d, g</td>
<td>m, n</td>
<td>f</td>
</tr>
<tr>
<td>French</td>
<td>1.6-1.8</td>
<td>Cohon (1972)</td>
<td>p, b, d</td>
<td>m, n</td>
<td>f (1.0) f (1.0)</td>
</tr>
<tr>
<td>Greek</td>
<td>1.5</td>
<td>Hansereau (1976)</td>
<td>p, b, d, k</td>
<td>m, n</td>
<td>"unstable"</td>
</tr>
<tr>
<td>Hungarian</td>
<td>2.0</td>
<td>Vogel (1973)</td>
<td>p, b, d, g</td>
<td>m, n</td>
<td>"unstable"</td>
</tr>
<tr>
<td>Thai</td>
<td>1.8</td>
<td>Twyman (1977)</td>
<td>All steps except velum</td>
<td>m, n</td>
<td>x (1.0)</td>
</tr>
<tr>
<td>Tswana</td>
<td>2.0</td>
<td>Kraeke (1916)</td>
<td>p, t</td>
<td>m, n</td>
<td>x (1.0)</td>
</tr>
</tbody>
</table>

NOTES:
1. Children's ages are given in approximate years and months e.g. 1.6 means "one year, six months." These figures are best interpreted with some caution, given the several methods of data collection and analysis used in the various studies cited. Age figures are more meaningful in the context of relative, rather than absolute, chronology of sound mastery. It seems quite likely that Piaget's very early age for emergence of [m] represents sound-production in a 'pre-linguistic' or babbling period. Apparently [m] was produced correctly from the beginning of the child's meaningful speech.
2. Stages between stop consonants indicate that the child does not yet distinguish these consonants on the basis of voicing characteristics.
3. Although Pater's study was collected over a long period of time, the child's mastery of speech sounds was sampled and analyzed in a series of stages according to vocabulary. In Table 1, consonant mastery during the period of the first 50 words is represented.
4. Twyman's method of data collection and analysis was similar to that of Pater. In Table 1, the child's mastery of speech sounds is shown at an advanced stage.
5. Adult [m] was realized as a velar nasal by the child during the period 1.8-1.11.
Phonetic Basis

The phonetic basis of nasal stability can be found both in the articulatory and acoustic properties of nasal consonants. In addition to their rather simple articulatory requirements, nasal consonants are acoustically distinct from all other classes of consonants (except perhaps [ŋ], see below). Unlike the oral obstruents, they do not have any frication or noise burst, any interruption of voicing or perturbation of voice fundamental frequency. Unlike the glides or approximants, they do involve a sudden change in amplitude and spectrum when adjacent to vowels. Their spectrum also includes resonance peaks with very large band widths and, sometimes, clearly marked anti-resonances. (For a review, see Fant 1960, Heinz 1974, and Ohala 1975). Many perceptual studies have also verified the perceptual saliency of nasal consonants as a class (e.g., Miller and Nicely 1955).

Even though nasal consonants are as a class rather stable and appear very early in children’s speech, they are occasionally the subject of some sound changes. In these cases, the parallels between phonological change in adult language data and in children’s speech are again evident.

ALTERNATIONS BETWEEN NASALIZED VOWEL AND VOWEL PLUS VELAR NASAL

Adult Language Data

In Aichinese (Sawyer 1958), excrecent [ɾ] has developed in several forms. Usually the stem already contained a nasal, e.g., *huma ‘wet rice field’ > [ʔumən]; *lajya ‘sesame seed’ > [laɾŋjə]. Presumably, the course of development was NV → NV → NVŋ.

In Tura, Ivory Coast (Bearth 1971), [ʊ] is sometimes realized as a syllabic velar nasal [ŋ], e.g., /kʊl/ ‘to catch’ [kʊŋ] or [kŋ].

In Mbay (Caprile 1968), the final vowel in CVCV words often has a light velar ending, e.g., /kɔ rè/ ‘donkey’ [kɔɾʊŋk] or (kɔɾʊŋ̱); /dànèŋ ‘earth’ [danãŋ] or [danãŋ̱].
CHILD PHONOLOGY AND HISTORICAL SOUND CHANGE

In Goajiro (Arawak) (Holmer 1949), nasal vowels often have a velar nasal offglide, e.g., /wi/ 'water' [wɨ].

French loans in Vietnamese (Barker 1969) are nativized with vowel plus velar nasal replacing nasalized vowels, e.g., original French [at ən] 'antenna' becomes [at̚ən]; [pɔ] 'deck of a ship' is [bɔn].

Child Language Data

Gregoire (1947:252–3) found that two children learning French (Charles and Edmond) produced the nasal vowels “like foreigners” substituting a vowel “peu ou point nasalisé” followed by a velar nasal, e.g., bâton ‘stick’ [batoʊ] or [batɔ̃] until age 4;6 and maman ‘mother’ [maman] up to 4;0. (Adult speakers of some regional dialects of French show similar substitutions, e.g., the Avignon dialect.) Charles and Edmond apparently produced the nasal vowels of their native French very much in the way Vietnamese speakers nativize French loanwords containing these sounds.

Chumeck (1977a) reported that a child learning Mandarin produced final velar nasals as nasalized vowels between the ages of 2;1 and 2;5, e.g., ‘help’, /parman/, was said as [bânā].

In data on children learning Japanese, Nakazima (1972) found that phrase-final/N/ was either a velar nasal, or nasalization of the preceding vowel, e.g., /kiriN/ ‘giraffe’ [kɪIN] ~ [tidi] ~ [tsIN] (1;5) /to:tsjN/ ‘father’ [tosuʔ] (1;4) or [to:tnN] ~ [doqa] (1;5).

Straight (1975:69) found that children learning Yucatec Maya also showed variation between nasalized vowel and velar nasal: Alberto (3;8) produced phrase-final nasals nearly always as voiced [r], sometimes as [Ve] or [Veγ]. Humberto (5;11) also showed this pattern. Adult speakers of Yucatec Maya show “highly variable optional rules of reduction” for phrase final nasals, including “complete loss of obstruence” with only V remaining.

In all four of the languages for which children’s forms have been cited above — French, Mandarin, Japanese, and Yucatec Maya — alternation between nasalized vowel and vowel plus velar nasal exists in the adult language, and it may be that children learning these languages merely reproduced variation which they heard in their language community.
Phonetic Basis

The acoustics of nasal consonants as well as the results of adult speech perception studies may aid in explaining why velar nasals — rather than those at other points of articulation — are likely to be confused with a nasalized vowel. One of the cues for a nasal consonant is an anti-formant caused by the absorption of acoustic energy by the oral cavity branching off the main nasal-pharyngeal airway. The frequency of the anti-formant is inversely proportional to the length of this branch. Thus [m] has the longest oral branch and the lowest and perceptually most evident anti-formant. Since [ŋ] has the shortest — often negligible — oral branch, any anti-formant it does have will be very high in frequency and will appear in that portion of the nasal spectrum already very much attenuated. Thus, the velar nasal will be perceptually less of a nasal consonant than [m], [n], etc. It will, in fact, very much resemble a simple nasalized vowel. In addition, the typically long transitions between velar consonants and adjacent vowels probably reduce the suddenness of the amplitude and spectrum changes that otherwise serve as cues for nasal consonants. For further details, see Ohala (1975) and works cited therein.

House (1957) investigated the confusability of nasals in a perceptual study. He found that the probability of confusing a nasal consonant with a nasalized vowel is far greater in the case of the velar nasal [ŋ] than for [m] or [n].

ALTERATION BETWEEN [n] AND [ŋ]

As mentioned earlier, it is somewhat rare to find nasal consonants alternating with or changing into other classes of consonants. One exception to this tendency is the alternation of [ŋ] with the lateral [I].

Adult Language Data

In Bengali (Ferguson and Chowdhury 1960:30), “except in very careful speech,” /n/ before /I/ results in nasalized [I].

In Palaun (Foley 1975:220), /I/ occurs as a reflex of Proto Austro-nesian (PAN) *n. Sample correspondences are: PAN *nanaq ‘pus’ Pal.
/lalət/; PAN *[maruk] 'chicken' Pal. /malk/.

In Melanesian (Codrington 1885), the following alternations are found: Ceran [nima] 'hand' is represented in other dialects as [lima]; there is free variation in such forms as Santa Cruz [napnu] ~ [lapnu] 'ten' and Malanta [niu] ~ [liu] 'coconut'.

Korean (Martin 1951 and 1954) shows word-initial [n] for /l/ in the Sino-Korean part of the vocabulary.

Child Language Data

In children’s early phonology, by far the more common substitutions for lateral consonants are glides ([ɾ] or [w]) or, for syllabic and pre-consonantal /l/, vowels (Pačesova 1968; Stoel 1974; Ingram 1976). However, there are instances in which children have substituted a nasal consonant for the lateral. These are presented in Table 2.

Phonetic Basis

The alternation between nasal and lateral consonants in both types of data can be explained on the grounds of acoustic similarity. Both nasals and laterals have transitions to a following vowel which involve sudden shifts in amplitude and spectral configuration; both types of consonants have anti-resonances; and both leave voicing and pitch unperturbed.

/s/ + NASAL CLUSTERS

Adult Language Data

The voiceless nasals in Burmese developed from initial clusters of /s/ + nasal, as evidenced by a comparison of cognate forms in Modern Burmese and Written Tibetan, the latter of which preserves the older phonetic form (data from Graham Thurgood, personal communication), e.g., Written Tibetan *na, Burmese /na/ 'nose'.

Sturtevant (1940:63) concludes that Indo-European *sm and *sn became [m] and [n] in Primitive Greek, just as *sr and *st became [ɾ] and [ɾ], respectively. A similar development for voiceless nasals in Old Irish is described by Thurneysen (1946:84).
Table 2

Alternations between Nasals and Laterals in Children’s Speech

<table>
<thead>
<tr>
<th>Language</th>
<th>Source</th>
<th>Adult form</th>
<th>Child form</th>
<th>Age</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabic</td>
<td>(Omar 1973)</td>
<td>allah</td>
<td>[a\nn\n\n]</td>
<td>2:3</td>
<td>'god'</td>
</tr>
<tr>
<td></td>
<td>(Salus & Salus 1974)</td>
<td>pillow</td>
<td>[pl\nuw]</td>
<td>1:7</td>
<td>'pillow'</td>
</tr>
<tr>
<td>Estonian</td>
<td>(Oksaar 1977)</td>
<td>muna</td>
<td>[\mun\a~]</td>
<td>1:7</td>
<td>'egg'</td>
</tr>
<tr>
<td>French</td>
<td>(Martinet 1974)</td>
<td>banane</td>
<td>[balan]</td>
<td>4:8</td>
<td>'banana'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5:5</td>
</tr>
<tr>
<td>Spanish</td>
<td>(Macken 1977)</td>
<td>leche</td>
<td>[l\net\fe]</td>
<td>2:1</td>
<td>'milk'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>reloj</td>
<td>[B\w\n\in\o]</td>
<td>2:1</td>
<td>'watch'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pastel</td>
<td>[p\l\ten]</td>
<td>2:0</td>
<td>'pastry'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>leche</td>
<td>[l\net\fi]</td>
<td>2:4</td>
<td>'milk'</td>
</tr>
<tr>
<td>Yucatec Maya</td>
<td>(Straight 1975; transcription simplified)</td>
<td>nook'</td>
<td>[luuk'~]</td>
<td>3:8</td>
<td>'clothing'</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neet'</td>
<td>[luk']</td>
<td>5:11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>[leet']</td>
<td>4:0</td>
<td>'to bite off'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5:8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some instances of Awadhi /–nh–/, i.e., a breathy-voiced nasal, derive from original Old Indo-Aryan –sn–, e.g., iyotsna 'moonlight' > /jon\na\j\a:/ (Saksena 1971:45).

Child Language Data

A number of writers have reported that children learning English substitute voiceless nasals for /s/ + nasal clusters, e.g., ‘Smith’ [ni\t], ‘sneeze’ [ni\d] at 2:9 (Smith 1973); ‘smack’ [n\uk], ‘snip’ [ni\p] at 3:0–3:1 (Greenlee 1973); ‘snail’ [\ne\j\i] (Hooper 1977).
PHOTONIC BIAS

As noted by Ladefoged (1971:11), in reference to Burmese, many instances of voiceless nasals, at least in initial position, are phonetically partially voiced just before release. This is true as well of the voiceless nasals recorded in child language by Greenlee. Acoustically, a sequence of voiceless nasal + voiced nasal represents a very close approximation to a sequence of /s/ + voiced nasal, i.e., both constitute a sequence of voiceless broad band noise followed immediately by the nasal consonant. The sequence NN- also is much simpler in terms of articulation: rather than requiring synchronization of tongue and/or lip movements with soft palate movements, the soft palate may be left in the same lowered position for both parts of the NN sequence — only the transition from voiceless to voiced is required.

NASAL + OBSTRENUENT CLUSTERS

Another pattern involving nasal consonants concerns the probability of retention of a post-vocalic nasal before a syllable final voiced Ç, as opposed to voiceless Ç obstruent.

ADULT LANGUAGE DATA

Among native vocabulary in Hindi, long nasalized vowels occurring before final obstruents must have a homorganic nasal consonant intervening, if the obstruent is voiced, but must not have any intervening nasal, if the obstruent is voiceless (M. Ohala 1972). Thus, *[sǐːk] 'wing' and *[sǐːŋ] 'horn' are existing morphemes; *[sǐːŋk] and *[sĩːg], however, could not be native morphemes.

In Breton, a VNC sequence may become VC, especially if the Ç is a voiceless obstruent Ç e.g., *[jowɔɾk] ~ *[jowɔk] 'young', and *[domp] ~ *[dɔp] 'to us' (Timm 1978).

In American English, the nasal in an original VNC sequence may be deleted or may be so short as to be perceptually insignificant, thus leaving the vowel distinctively nasalized. Where the stop is voiced Ç, however, the nasal consonant is relatively long and not liable to be deleted: e.g., 'send' is *[sɛnt], but 'sent' may be *[sɛnt] (Malécot 1960; Ohala 1975; and

-- 293 --
Child Language Data

In acquisition data for English and other languages, it has been noted that children have different productions for NC clusters, depending on the voicing of the obstruent; in general, children produce the nasal consonant, if the obstruent in such clusters is voiced, but delete the nasal consonant, when the obstruent is voiceless.

In data for 16 children (2;5–5;10) acquiring Spanish, Hernández-Chávez, Vogel, and Clumeck (1976) found that “in ... medial NC’s, the nasal appears earlier than the homorganic voiced obstruent, and in the case of medial NC’s it is the obstruent that is articulated earlier.”

Contreras and Saporta (1971) reported the following Spanish forms: *chancho* ‘pig’ [tʃaʃa] or [tʃaʃo] (1;10), but *grande* ‘big’ [ɡran] and *anda* ‘he walks’ [ana] at the same age.

English examples of this pattern can be drawn from several studies: ‘ants’ [ats], but ‘hand’ [han] (1;10) (Velten 1943); ‘don’t’ [dɔt], but ‘hand’ [hæ] (2;0) (Leopold 1947); ‘tent’ [tɛnt], but ‘mend’ [mɛn] (2;2) (Smith 1973).

Phonetic Basis

As mentioned above, the differential treatment of NC clusters can probably be accounted for by the effects of obstruent voicing on the nasal consonant. Nasal consonants (in English at least) are considerably longer when the following obstruent is voiced; thus, they would be more perceptible and less likely to be deleted in the listener’s reproduction.

So far, the parallels we have documented have to do with nasal consonants. The following two cases are similar to some of the previous ones in that they appear to be motivated by acoustic similarity, but they do not involve nasals.

FRICITION + [w] RESULTS IN A LABIAL FRICATIVE

Adult Language Data

Henderson (1975) found free variation between the initial cluster
CHILD PHONOLOGY AND HISTORICAL SOUND CHANGE

[kʰw] and [f] in Songkhla, a Thai language, e.g., [fai] \sim [kʰwai] 'fire'.

In Tuscarora (Williams 1976), the fricative variant of /w/ (described as a velar glide) is bilabial [φ], e.g., /vəw/ [ˈvəw] 'it arrived'. (Tuscarora has no labial phonemes.)

In Sentani, /h/ is optionally realized as [f] or [φ] before [w] (Cowan 1965).

Clumeck (1977b) cited the following examples of Chinese dialect variants:

<table>
<thead>
<tr>
<th>Standard Mandarin</th>
<th>Wu</th>
<th>Xiang</th>
<th>Gan</th>
<th>Hakka</th>
</tr>
</thead>
<tbody>
<tr>
<td>'be able'</td>
<td>wei</td>
<td>val</td>
<td>φ ui</td>
<td>fi</td>
</tr>
<tr>
<td>'draw'</td>
<td>wa</td>
<td>–</td>
<td>φ ua</td>
<td>fa</td>
</tr>
</tbody>
</table>

Ohala and Lorentz (1977) reported similar trends in many other languages: when friction is added to the labial-velar [w], the result is much more likely to be a labial, rather than a velar, fricative.

Child Language Data

Both Chao (1973) and Clumeck (1977b) found parallels between the speech of children learning Mandarin and the dialect variation noted in the adult data above.

At 2;4, the child studied by Chao said adult Mandarin hul [wul] 'flower' as [dua].

Clumeck noted the following forms in the speech of a child between the ages of 1;10 and 2;10; like Chao’s granddaughter, the child used [f] for adult [w]; /huə/ (reduplicated) [wa wa] ‘draw’ \> [fa fa] /huei/ [wei] ‘be able’ \> [fei].

Many authors have reported that English-speaking children replace initial sw clusters with [f] or [w] (the latter described as a “voiceless labial”), e.g., Lewis (1936) ‘sweet’ [fi:t] (2;3); Webster (1975) ‘sweater’ [fiw ɪˈtʃi] (2;6); Velten (1943) ‘swim’ [ʃʌm], ‘sweep’ [ʃʌp] (1;10); Smith (1973) ‘switch’ [ʃwɪtʃ] (2;9), Greenlee (1973) ‘switch’ [ʃwɪtʃ] (3;0).

In deviant English phonology (Lorentz 1972, cited in Ingram 1976) several labials are realized as [f] when the adult model word contains a cluster of /s/ + labial consonant: ‘swat’ [fat], ‘spoon’ [fun], ‘small’ [fal].
A related example from German (Stern and Stern 1927, cited by Lewis 1936) is Schwanz 'tail' as 'fatz' at 1:9.

Phonetic Basis

Ohala and Lorentz (1977) suggest that the reason a fricated [w] usually becomes a labial, rather than a velar fricative, is that of the two potential noise sources, labial and velar, the latter noise source is greatly attenuated by the low-pass filtering characteristics of the air space anterior to it, whereas the former (the labial) noise source is not subject to any such filtering. Therefore, the labial noise source is perceptually more evident.

PALATALIZED LABIALS BECOME APICALS

Adult Language Data

There is abundant phonological evidence that palatalized labials have a tendency to change to apicals, e.g., Standard Czech [mlcstz] ~ East Bohemian [n c stz] 'town (Belić 1966); Lungchow [pjaz] ~ Tienchow [zea] (Li 1977); Roman Italian [bjanko] ~ Genoese Italian [dʒanku] 'white' (Jaberg and Jud 1928–1940); Pre-Classical Greek *kom-ya- ~ Classical Greek Komós 'common' (Meillet and Vendryes 1924). See Ohala 1978 for further examples and discussion.

Child Language Data

Timm (1977 and personal communication) recorded the sound substitutions of one child learning Russian. Her data reveal that the most common substitution was that of palatalized labials being replaced by dentals (37 instances) as opposed to palatalized dentals by labials (23 instances) and palatalized dentals by velars (24 instances).

Phonetic Basis

As detailed in Ohala 1978, the second formant transition characteristic of palatalized labials is virtually identical to that characteristic of dentals. In the absence of other cues (e.g., stop burst), listeners are liable to mistake palatalized labials for dentals and, then, repeat them as such.
CHILD PHONOLOGY AND HISTORICAL SOUND CHANGE

Perceptual experiments such as those by Lyublinskaya (1966) and Winitz, Scheib, and Reeds (1972) also present evidence of the perceptual similarity of dentals and palatalized labials or labials followed by palatal vowels.

CONCLUSION

We have reviewed above evidence which shows that there are remarkable parallels between phonological processes in adult and child language. We think the parallels are too specific to be attributed to chance. Does this mean that children are the cause of sound change? Not necessarily. What we do not know, and what is crucial to this issue is: once a speaker makes a sound substitution (or ‘mispronunciation’), whose speech, child or adult, is more likely to serve as a model for others’ pronunciation? The distinction we are making here is that between the initiation of sound change and the transmission or spread of sound change (Weinreich, Labov, and Herzog 1968). We would claim that all speakers, children and adults, by virtue of shared articulatory and perceptual constraints, are eligible to be the initiators of “mini” sound changes of the type documented here. But whose sound changes, once initiated, spread to other speakers to become “maxi” sound changes, i.e., sound changes proper, characteristic not only of an isolated speaker, but of whole speech communities?

As far as we know, there is no definite evidence at present which would answer this question. But until it is answered, we would maintain that studies of parallels between child and adult phonologies tell us more about the human universal phonetic factors that lead to sound change, rather than the scenario which converts a mispronunciation into a full-fledged sound change.

NOTES

1. This article is a revised version of a paper presented at the Fourth International Conference on Historical Linguistics held at Stanford University in March 1979. We are grateful to Charles Ferguson, Joseph Greenberg, Leonora Timm, and especially Marlys Macken for help and advice. Portions of the research reported here were done,
using the Phonology Archive of the Language Universals Project, Stanford University. The second author's research was supported in part by the National Science Foundation.

2. Nakazima's original transcription of the nasals is retained here. 'N' represents a nasal more which assimilates in place of articulation to a following consonant in adult speech. In word-final position, this symbol may represent an "incompletely closed velar nasal" (Lovins 1974).

Abbreviations Used in References

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLS</td>
<td>Chicago Linguistic Society Annual Meeting, Proceedings</td>
</tr>
<tr>
<td>IJAL</td>
<td>International Journal of American Linguistics</td>
</tr>
<tr>
<td>JASA</td>
<td>Journal of the Acoustical Society of America</td>
</tr>
<tr>
<td>JSHD</td>
<td>Journal of Speech and Hearing Disorders</td>
</tr>
<tr>
<td>PRCLD</td>
<td>Papers and Reports on Child Language Development, Stanford</td>
</tr>
<tr>
<td>RPL</td>
<td>Report of the Phonology Laboratory, Berkeley</td>
</tr>
<tr>
<td>SELAF</td>
<td>Société d'Études Linguistiques et Anthropologiques de France</td>
</tr>
</tbody>
</table>

REFERENCES

Apronti, E.O.

Barker, Milton E.

Bearth, Thomas
1971 "Lesoncé taura (côte d'Ivoire)," SIL Publications in Linguistics and Related Fields 30, Norman: Summer Institute of Linguistics.
CHILD PHONOLOGY AND HISTORICAL SOUND CHANGE

Bětic, J.

Burton, Robbins

Caprile, J-P.

Carrell, James

Chao, Yuen-Ren

Chen, Matthew

Chumeeck, Harold
1977b “A Parallel between Child and Adult Language: a Study in the Phonetic Explanation of Sound Patterns,” unpublished manuscript.

Cordin, Robert H.

Cohen, Marcel

— 299 —
Contreras, Helen, and Sol Saporta

Cowan, H.K.J.

Cruttenden, Alan

Drachman, Gaberell

Eisenberg, Rita

Fant, Gunnar

Ferguson, Charles A.

Ferguson, Charles A., and Munier Chowdhury

Ferguson, Charles A., and Carol B. Farwell

Foley, William A.

— 300 —
CHILD PHONOLOGY AND HISTORICAL SOUND CHANGE

Grammont, Maurice

Greenlee, Mel

Grégoire, Antoine

Guthrie, Malcolm
1967-70 *Comparative Bantu*, 4 vols, Gregg.

Heinz John M.

Henderson, Eugenie J.A.
1975 "Feature-shuffling in South East Asian languages: or How Big is a Segment?" Paper presented at the Eighth Sino-Tibetan conference, Berkeley, California.

Hernández-Chávez, Eduardo, Irene Vogel, and Harold Clumeck.

Hinofotis, Frances

Holmer, Nils M.

Hombert, Jean Marie, John J. Ohala, and William G. Ewan

Hooper, Joan Bybee

House, Arthur S.
1957 "Analog Studies of Nasal Consonants," *JSJD* 22.190-204.
Ingram, David

Jaberg, K. and J. Jud
1928-40 Sprach und Sachatlas Italiens und der Stadtschweiz, Zurich.

Jakobson, Roman
1968 Child Language, Aphasia, and Phonological Universals, the Hague: Mouton

Janson, T.

Javkin, Hector

Jeng, Heng-Hsiung

Kawasaki, Haruko

Kroeber, Alfred L.

Kuhl, Patricia K.

Ladefoged, Peter

Leopold, Werner F.

Lewis, Michael M.
1936 Infant Speech: a Study of the Beginnings of Language, New
CHILD PHONOLOGY AND HISTORICAL SOUND CHANGE

Li, Fang-Kuei

Lorentz, James P.

Lovins, Julie B.
1974 “Why Loan Phonology is Natural Phonology,” in Papers from Parasection on Natural Phonology, pp. 240-50, CLS.

Lyublinskaya, V. V.

Macken, Marlys A.

Malécot, André

Martin, Samuel E.
1954 Korean Morphophonemics, Baltimore: Linguistic Society of America

Martinet, Jeanne

Meillet, Antoine

Meillet, Antoine, and Joseph Vendryes

Miller, George A., and Patricia E. Nicely

Morley, Muriel E.

Nakazuma, Sei

Ohala, John J.

Ohala, John, and James P. Lorentz

Ohala, John, Carol J. Riordan, and Haruko Kawasaki

1978 "The Influence of Consonant Environment upon Identification of Transitionless Vowels," *JASA* 64:S18

Ohala, Manjari

1972 "Topics in Hindi-Urdu Phonology," Ph. D. Dissertation, UCLA.

Oksaar, Els

CHILD PHONOLOGY AND HISTORICAL SOUND CHANGE

Olmsted, David L.
1971 Out of the Moths of Babes, the Hague: Mouton.

Omar, Margaret K.
1973 The Acquisition of Egyptian Arabic as a Native Language, the Hague: Mouton

Pačesova, Jaroslava
1968 The Development of Vocabulary in the Child, Brno: University J.E. Purkyne.

Passy, Paul

Pavlovitch, Milivoje

Priestly, T.M.S.

Robinson, Frank

Sakern, B.R.

Salus, Mary W., and Peter H. Salus.

Sawyer, Jesse O., Jr.

Schleicher, August

— 305 —
Smith, Neil V.

Srivastava, G.P.

Stampe, David

Stern, Clara, and William Stern

Stoel, Carol

Straight, H. Stephen

Sturtevant, Edgar H.
1940 *Pronunciation of Latin and Greek*, New Haven: Yale University Press.

Sweet, Henry

Thurneysen, Rudolf

Timm, Leonora A.
1978 “The Segmental Phonology of Carhaissien Breton,” unpublished manuscript, University of California, Davis.

Tuaycharoen, Pintip
CHILD PHONOLOGY AND HISTORICAL SOUND CHANGE

Vanvik, Arne

Velten, H.V.

Vihman, Marilyn M.

Vogel, Irene

Webster, B.

Weinreich, Uriel, William Labov, and Marvin I. Herzog

Williams, M.M.

Winitz, Harris, M.E. Scheib, and J.A. Reeds.

Wright, James T.

Yasuda, Akiko