One of the major assets of Autosegmental Phonology is that it allows to reduce procedural techniques of morphological exponence to a simple generalized concept of concatenation. In particular, the moraic approach to phonological length (Hayes, 1989) gives rise to a maximally simple account of morphologically triggered gemination, vowel lengthening, and coda epenthesis: as affixation of a \(\mu \). Although mora affixation is a standard assumption in numerous analyses (e.g. Lombardi and McCarthy (1991); Samek-Lodovici (1992); Davis and Ueda (2002); Grimes (2002); Davis and Ueda (2006); Álvarez (2005); Stonham (2007); Yoon (2008); Haugen and Kennard (2008)), some basic questions about the nature of mora affixation have never been properly addressed, one of them being the question about the linearization of prosodic affixes.

In this talk, we argue that prosodic nodes are assigned to a fixed position on their tier by the morphology and cannot be dislocated by later processes. Prosodic nodes are prefixed or suffixed to specific peripheral or prominent elements of their morphological bases on an affix-specific (i.e. phonologically arbitrary) basis. We therefore extend the assumptions about segmental affixation in Yu (2002, 2007) (cf. also Fitzpatrick (2004)) that affixation targets a specific member of a set of crosslinguistically possible anchor points by lexical subcategorization to prosodic affixation. An important empirical prediction of the subcategorization-based system is that an affix-\(\mu \) cannot move to different linear positions under the pressure of phonological constraints. Based on a typological survey of quantity-manipulating morphological phenomena, we show that this prediction is true and argue that apparent counterevidence such as Keley-I gemination under the analysis of Samek-Lodovici (1992) is due to a morphological misinterpretation of the data.

References

