The Emergence of Consonant-Vowel Metathesis in Karuk

Andrew Garrett & Tyler Lau

University of California, Berkeley
garrett@berkeley.edu
tylerlau@berkeley.edu

Society for the Study of the Indigenous Languages of the Americas (SSILA) 2018
Salt Lake City, UT, USA

January 6, 2018
Many thanks to the following:

- Karuk master speakers Sonny Davis and the late Lucille Albers, Charlie Thom, and especially Vina Smith;
- research collaborators LuLu Alexander, Tamara Alexander, Crystal Richardson, and Florrine Super (in Yreka) and Erik H. Maier, Line Mikkelsen, and Clare Sandy (at Berkeley); and
- Susan Lin and the audience at UC Berkeley’s Phonetics and Phonology Forum for insightful comments and suggestions.

Data in this talk is drawn from Ararahi’urípih, a Karuk dictionary and text corpus (http://linguistics.berkeley.edu/~karuk).
Overview

- Karuk V_1CV_2 sequences show much coarticulation of V_1 into V_2

 $/uCi/ \rightarrow [uC^w_i], /iCa/ \rightarrow [iC^j_a], /iCu/ \rightarrow [iC^j_u]$ (all high V_1)

 - We argue that this coarticulation is a source of CV metathesis along lines that are phonologized in other languages.

- Goals

 - To figure out the environments in which this process occurs
 - To test the hypothesis that coarticulation along with *perceptual enhancement* is the driving force behind CV metathesis (rather than pure perceptual reanalysis, as per some previous research)
Overview

• Karuk V_1CV_2 sequences show much coarticulation of V_1 into V_2
 /uCi/ \rightarrow [uCwi], /iCa/ \rightarrow [iCja], /iCu/ \rightarrow [iCju] (all high V_1)
• We argue that this coarticulation is a source of CV metathesis along lines that are phonologized in other languages.

• Goals
 • To figure out the environments in which this process occurs
 • To test the hypothesis that coarticulation along with *perceptual enhancement* is the driving force behind CV metathesis (rather than pure perceptual reanalysis, as per some previous research)
• Karuk V_1CV_2 sequences show much coarticulation of V_1 into V_2
 /uCi/ \rightarrow [uC$^\text{w}i$], /iCa/ \rightarrow [iC$^\text{j}a$], /iCu/ \rightarrow [iC$^\text{j}u$] (all high V_1)
• We argue that this coarticulation is a source of CV metathesis along lines that are phonologized in other languages.
• Goals
 • To figure out the environments in which this process occurs
 • To test the hypothesis that coarticulation along with *perceptual enhancement* is the driving force behind CV metathesis (rather than pure perceptual reanalysis, as per some previous research)
VC > CV Metathesis

- $V_1CV_2 > CV_1V_2$ metathesis in a prefix *ú- in Grassfields Bantu class 3 nouns (Hyman, 1979, 1981; Blevins and Garrett, 1998)

 - Aghem: *ú- prefix causes labialization of following consonant
 - Noni: *ú- is lost and class is marked only by labialization
 - Proposed pathway of VC > CV metathesis

 \[
 \begin{align*}
 \text{Stage 1} & \quad \text{Little coarticulation} \\
 \text{uCV} & \quad \rightarrow \\
 \text{Stage 2} & \quad \text{Heavy coarticulation} \\
 \text{uC}^wV & \quad \rightarrow \\
 \text{Stage 3} & \quad \text{Vowel Loss} \\
 \text{C}^wV &
 \end{align*}
 \]
• $V_1CV_2 > CV_1V_2$ metathesis in a prefix *ú- in Grassfields Bantu class 3 nouns (Hyman, 1979, 1981; Blevins and Garrett, 1998)

 Aghem ó-kwíŋ (cf. plural é-kíŋ) ‘mortar’
 Noni kwen (cf. plural ken) ‘firewood’

• Aghem: *ú- prefix causes labialization of following consonant
• Noni: *ú- is lost and class is marked only by labialization
• Proposed pathway of VC $> CV$ metathesis
VC > CV Metathesis

- $V_1CV_2 > CV_1V_2$ metathesis in a prefix *ú- in Grassfields Bantu class 3 nouns (Hyman, 1979, 1981; Blevins and Garrett, 1998)
 - Aghem: ó-kwíŋ (cf. plural é-kíŋ) ‘mortar’
 - Noni: kwën (cf. plural ken) ‘firewood’

- Aghem: *ú- prefix causes labialization of following consonant
- Noni: *ú- is lost and class is marked only by labialization

- Proposed pathway of VC > CV metathesis

\[
\begin{align*}
\text{Stage 1} & \quad \text{Little coarticulation} & \quad \text{Stage 2} & \quad \text{Heavy coarticulation} & \quad \text{Stage 3} & \quad \text{Vowel Loss} \\
uCV & \quad \rightarrow & \quad uC^wV & \quad \rightarrow & \quad C^wV
\end{align*}
\]
VC > CV Metathesis

- $V_1CV_2 > CV_1V_2$ metathesis in a prefix *ú- in Grassfields Bantu class 3 nouns (Hyman, 1979, 1981; Blevins and Garrett, 1998)

 Aghem: ó-kwíŋ (cf. plural é-kíŋ) ‘mortar’
 Noni: kwen (cf. plural kên) ‘firewood’

- Aghem: *ú- prefix causes labialization of following consonant
- Noni: *ú- is lost and class is marked only by labialization
- Proposed pathway of VC > CV metathesis

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Little coarticulation</td>
<td>Heavy coarticulation</td>
<td>Vowel Loss</td>
</tr>
<tr>
<td>uCV</td>
<td>→</td>
<td>uCwV</td>
</tr>
</tbody>
</table>
Coarticulation into Metathesis: Misperception Approaches

- **Misperception** (listener-driven): automatic coarticulation is misperceived as being underlying rather than phonetic
 - /uCV/ [uCwV] is misperceived as /uCwV/
 - Can be misperceived as /CwV/ if initial /u/ weakened

Prediction: categorical presence vs. absence of offglide
Coarticulation into Metathesis: Misperception Approaches

- Misperception (listener-driven): automatic coarticulation is misperceived as being underlying rather than phonetic
 - /uCV/ [uCwV] is misperceived as /uCwV/
 - Can be misperceived as /CwV/ if initial /u/ weakened
Prediction: categorical presence vs. absence of offglide
Coarticulation into Metathesis: Perceptual Enhancement

- *Perceptual enhancement* (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 - Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [w]
 - The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis
- Parallel example in process of vowel nasalization (VNC $\rightarrow \tilde{V}C$) (Beddor, 2009)

Predictions: gradient offgliding; offglide gesture magnitude or duration greater than that of V_1

Stage 1: uC \rightarrow Stage 2: $uC^w \sim uC^w$ \rightarrow Stage 3: C^w
Coarticulation into Metathesis: Perceptual Enhancement

- **Perceptual enhancement** (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 - Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [w]
 - The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis

- Parallel example in process of vowel nasalization (VNC > ŏC) (Beddor, 2009)

Predictions: gradient offgliding; offglide gesture magnitude or duration greater than that of V₁

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>uC</td>
<td>uCʷ → uCʷ</td>
<td>Cʷ</td>
</tr>
</tbody>
</table>
Coarticulation into Metathesis: Perceptual Enhancement

• *Perceptual enhancement* (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 • Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [w]
 • The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis

• Parallel example in process of vowel nasalization (VNC > ŭC) (Beddor, 2009)

Predictions: gradient offgliding; offglide gesture magnitude or duration greater than that of V₁

Stage 1

\[uC \rightarrow uC^w \sim uC^w \rightarrow C^w \]
Coarticulation into Metathesis: Perceptual Enhancement

- *Perceptual enhancement* (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 - Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [w]
 - The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis
- Parallel example in process of vowel nasalization (VNC > ěC) (Beddor, 2009)

Predictions: gradient offgliding; offglide gesture magnitude or duration greater than that of V_1

\[
\begin{align*}
\text{Stage 1} & : & uC & \rightarrow & uC^w & \sim & uC^w & \rightarrow & C^w \\
\end{align*}
\]

Andrew Garrett & Tyler Lau

The Emergence of Consonant-Vowel Metathesis in Karuk
Coarticulation into Metathesis: Perceptual Enhancement

- **Perceptual enhancement** (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 - Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [\(^w \)]
 - The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis
- Parallel example in process of vowel nasalization (VNC \(\rightarrow \) \(\hat{V}C \)) (Beddor, 2009)

Predictions: gradient offgliding; offglide gesture magnitude or duration greater than that of \(V_1 \)

\[
\begin{align*}
\text{Stage 1} & \quad \text{Stage 2} & \quad \text{Stage 3} \\
uC & \rightarrow & uC^w \sim uC^w & \rightarrow & C^w
\end{align*}
\]
Coarticulation into Metathesis: Perceptual Enhancement

- Perceptual enhancement (speaker-driven): metathesis occurs to optimize the perception of a weakened cue
 - Along with initial coarticulation, a weakened [u] is accompanied by strengthening of the coarticulated gesture [w]
 - The strengthening of the coarticulation compensates for the weakened gesture, leading to eventual metathesis
- Parallel example in process of vowel nasalization (VNC > ˜VC) (Beddor, 2009)

Predictions: gradient offgliding; offglide gesture magnitude or duration greater than that of V₁

\[
\text{Stage 1} \quad \text{Stage 2} \quad \text{Stage 3} \\
\text{uC} \quad \rightarrow \quad \text{uC}^w \sim \text{uC}^w \quad \rightarrow \quad \text{C}^w
\]
Karuk language background

Karuk (káruk ‘upriver’)

• ‘Hokan’ isolate

• Spoken along the mid-Klamath River in northern California (and diasporically)

Map by Hannah Haynie and Maziar Toosarvandani (http://linguistics.berkeley.edu/Survey/), colored by a Wikipedia user
Karuk language background

Karuk (káruk ‘upriver’)

• ‘Hokan’ isolate

• Spoken along the mid-Klamath River in northern California (and diasporically)

Map by Hannah Haynie and Maziar Toosarvandani (http://linguistics.berkeley.edu/Survey/), colored by a Wikipedia user
Karuk language background

- Karuk language vitality
 - In 1950: \(\sim 100 \) speakers (Bright, 1957)
 - In 2018: \(<\sim 6\) first-language elder speakers
 - Very active language revitalization

- Extensive language preservation work by Karuk speakers
 - beginning in the 19th century
 - especially in collaboration with A.L. Kroeber, J.P. Harrington, William Bright, Monica Macaulay, current Berkeley researchers

- Data in this talk
 - drawn from *Ararahi’urípih*, a Karuk dictionary and text corpus (http://linguistics.berkeley.edu/~karuk)
 - opportunistic (not elicited for this purpose), partly from legacy recordings
Karuk phonology

- Karuk Vowels

i i: u u:
e: o:
a a:

- Karuk Consonants

p t tʃ k ?
m n
f θ ([θ] ~ [s]) s ([ʂ]) ʃ x h
β r j
Karuk Coarticulation

- Earlier sources note labialization of /x/ after back V and palatalization of /k m x/ after front V, even across word boundary [ʔíf kʰáːrim] ‘truly badly’ (Harrington, 1930, 1932b,a; Bright, 1957)

- In our data
 - Labialization: /uCi/ → [uCw]$
 - Palatalization: /iCa/, /iCu/ → [iC̃a], [iC̃u]

\[
\begin{array}{cccccc}
p & t & tʃ & k & ʔ \\
m & n & & & \\
f & & ([θ] \sim [s]) & & & \\
β & & & & & j \\
\end{array}
\]
Karuk Coarticulation

• Earlier sources note labialization of /x/ after back V and palatalization of /k m x/ after front V, even across word boundary [ʔíf kjáːɾim] ‘truly badly’ (Harrington, 1930, 1932b,a; Bright, 1957)

• In our data
 • Labialization: /uCi/ → [uCwi]
 • Palatalization: /iCa/, /iCu/ → [iCja], [iCju]
Karuk Coarticulation

- Earlier sources note labialization of /x/ after back V and palatalization of /k m x/ after front V, even across word boundary [ʔíf kʲáːrim] ‘truly badly’ (Harrington, 1930, 1932b,a; Bright, 1957)
- In our data
 - Labialization: /uCi/ → [uCʷi]
 - Palatalization: /iCa/, /iCu/ → [iCʲa], [iCʲu]

```
p t tʃ k ?
m n
f θ ([θ] ~ [s]) s ([ʃ]) f x h
β r j
```
Karuk: coarticulation, metathesis, and variation

• Examples of “completed” metathesis (u- ‘3sg’, piip ‘say’)

 • xás upíip “pa’íshaha itárivramnihaak . . . ”
 ‘And she said, “When you pour the water in . . .”’

 • xás upíip
 ‘and he said’

 • “xas vára maath káru” upiip
 ‘“and it was heavy”, he said’

• There is interspeaker variation on the rate of this process

• All examples in this presentation are from one female speaker
 (more data will be incorporated in future work)
Karuk: coarticulation, metathesis, and variation

- Examples of “completed” metathesis (u- ‘3sg’, piip ‘say’)
 - xás upíip “pa’íshaha itárivramnihaak . . .” [upi:p]
 ‘And she said, “When you pour the water in . . .”’
 - xás upíip [upwi:p]
 ‘and he said’
 - “xas vára maath káru” upip [pwi:p]
 ‘“and it was heavy”, he said’
- There is interspeaker variation on the rate of this process
- All examples in this presentation are from one female speaker
 (more data will be incorporated in future work)

Andrew Garrett & Tyler Lau
The Emergence of Consonant-Vowel Metathesis in Karuk
Karuk: coarticulation, metathesis, and variation

• Examples of “completed” metathesis (u- ‘3sg’, piip ‘say’)
 • xás upíip “pa’íshaha itárivramnihaak . . . ” [upi:p]
 ‘And she said, “When you pour the water in . . . ”’
 • xás upíip [upw:i:p]
 ‘and he said’
 • “xas vára maath káru” upiip [pwi:p]
 ‘“and it was heavy”, he said’

• There is interspeaker variation on the rate of this process
• All examples in this presentation are from one female speaker
 (more data will be incorporated in future work)
Palatalization

F2 falls
Labialization

F2 rises
Corpus and Alignment

- Extracted sentences and tokens from *Ararahi’urípih* corpus
- Force-aligned using faseAlign (Wilbanks, 2017), designed for Latin American Spanish data—some differences:
 - /h/ treated as /x/
 - /β/ (⟨v⟩) treated as /b/ (Spanish has [β] allophone of /b/)
 - /θʃ/ treated as /s/ (/θ/ often [s] in Karuk, [ʃ] similar to [s])
- Target words had two possible representations
 - Ex. *puxích* = [puxítʃ] ~ [puxwítʃ]
 - Best representation chosen probabilistically by aligner
 - All tokens hand-checked
- Formants taken at 7 equally spaced intervals via ifcformant
Corpus and Alignment

- Extracted sentences and tokens from *Ararahi’urípirh* corpus
- Force-aligned using faseAlign (Wilbanks, 2017), designed for Latin American Spanish data—some differences:
 - /h/ treated as /x/
 - /β/ (<v>) treated as /b/ (Spanish has [β] allophone of /b/)
 - /θʃ/ treated as /s/ (/θ/ often [s] in Karuk, [ʃ] similar to [s])
- Target words had two possible representations
 - Ex. *puxích* = [puxítʃ] ∼ [puxwítʃ]
- Best representation chosen probabilistically by aligner
- All tokens hand-checked
- Formants taken at 7 equally spaced intervals via ifcformant
Corpus and Alignment

- Extracted sentences and tokens from Ararahi’urípih corpus
- Force-aligned using faseAlign (Wilbanks, 2017), designed for Latin American Spanish data—some differences:
 - /h/ treated as /x/
 - /β/ (<v>) treated as /b/ (Spanish has [β] allophone of /b/)
 - /θʃ/ treated as /s/ (/θ/ often [s] in Karuk, [ʃ] similar to [s])
- Target words had two possible representations
 - Ex. *puxích* = [puxíťʃ] ∼ [puxwíťʃ]
 - Best representation chosen probabilistically by aligner
 - All tokens hand-checked
- Formants taken at 7 equally spaced intervals via ifcformant
Corpus and Alignment

- Extracted sentences and tokens from *Ararahi’urípih* corpus
- Force-aligned using faseAlign (Wilbanks, 2017), designed for Latin American Spanish data—some differences:
 - /h/ treated as /x/
 - /β/ (⟨v⟩) treated as /b/ (Spanish has [β] allophone of /b/)
 - /θʃ/ treated as /s/ (/θ/ often [s] in Karuk, [ʃ] similar to [s])
- Target words had two possible representations
 - Ex. *puxích* = [puxíťʃ] ∼ [puxwíťʃ]
 - Best representation chosen probabilistically by aligner
 - All tokens hand-checked
- Formants taken at 7 equally spaced intervals via ifcformant
Measurements

- **Total duration** = $V_1 + C + \text{offglide} + V_2$
- **V_1 percentage** = Duration of V_1/Total duration
- **F2 difference** = $F2_{t_1}(V2) - F2_{t_1}(\text{offglide})$
Measurements

- Total duration = $V_1 + C + \text{offglide} + V_2$
- V_1 percentage = Duration of V_1/Total duration
- $F2$ difference = $F2_{t1}(V2) - F2_{t1}(\text{offglide})$
Measurements

- Total duration = V₁ + C + offglide + V₂
- V₁ percentage = Duration of V₁/Total duration
- F2 difference = F2_{t1 (V2)} - F2_{t1 (offglide)}
Measurements

- Total duration = $V_1 + C + \text{offglide} + V_2$
- V_1 percentage = Duration of V_1/Total duration
- F2 difference = $F2_{t1}(V_2) - F2_{t1}(\text{offglide})$
Measurements

- **Total duration** = $V_1 + C + \text{offglide} + V_2$
- **V_1 percentage** = Duration of V_1/Total duration
- **$F2$ difference** = $F2_{t1}(V_2) - F2_{t1}(\text{offglide})$
Measurements

- Total duration = $V_1 + C + \text{offglide} + V_2$
- V_1 percentage = Duration of V_1/Total duration
- F2 difference = $F2_{t1}(V_2) - F2_{t1}(\text{offglide})$
Measurements

- **Total duration** = $V_1 + C + \text{offglide} + V_2$
- V_1 percentage = Duration of V_1/Total duration
- **F2 difference** = $F2_{t1}(V2) - F2_{t1}(\text{offglide})$
Measurements

- Total duration = $V_1 + C + \text{offglide} + V_2$
- V_1 percentage = Duration of V_1/Total duration
- F2 difference = $F2_{t1}(V_2) - F2_{t1}(\text{offglide})$
Measurements

• Total duration = \(V_1 + C + \text{offglide} + V_2 \)
• \(V_1 \) percentage = Duration of \(V_1 \)/Total duration
• F2 difference = \(F_{2\,t_1}(V_2) - F_{2\,t_1}(\text{offglide}) \)
Variables

• **Independent variable**
 • V_1 percentage (= normalized duration)

• **Dependent variables**
 • Offglide percentage (= normalized duration)
 • F2 difference

• Comparison of target offglides vs. control /u/ formant means
Variables

- **Independent variable**
 - V_1 percentage (= normalized duration)
- **Dependent variables**
 - Offglide percentage (= normalized duration)
 - F2 difference
- **Comparison of target offglides vs. control /u/ formant means**
Variables

- Independent variable
 - V_1 percentage (= normalized duration)
- Dependent variables
 - Offglide percentage (= normalized duration)
 - F2 difference
- Comparison of target offglides vs. control /u/ formant means
Our analysis evaluates predictions of three proposed explanations for sound change with respect to metathesis:

- Misperception
- Gestural Shift
- Perceptual Enhancement
Misperception

Prediction: Misperception and V_1 duration

- Offglide duration should not continuously increase as V_1 duration decreases.
- We should expect little to no correlation.
Prediction: Gestural Shift and V_1 duration

- As V_1 duration decreases, offglide duration increases
- Labial/palatal gesture shifts from V_1 into following vowel
Perceptual Enhancement

u x i

labial velar tongue blade
Prediction: Perceptual Enhancement and V_1 duration

- As V_1 duration decreases, offglide duration increases exponentially.
- Labial gesture not only shifts from V_1 into following vowel but is also enhanced.
- Duration of latter part of labial/palatalized gesture may increase.
- Alternatively, greater labialization may cause lower formant values than expected for /u/.
Prediction: Perceptual Enhancement and V_1 duration

- As V_1 duration decreases, offglide duration increases exponentially.
- Labial gesture not only shifts from V_1 into following vowel but is also enhanced.
- Duration of latter part of labial/palatalized gesture may increase.
- Alternatively, greater labialization may cause lower formant values than expected for /u/.

Andrew Garrett & Tyler Lau
The Emergence of Consonant-Vowel Metathesis in Karuk
Prediction: Perceptual Enhancement and V_1 duration

- As V_1 duration decreases, offglide duration increases exponentially.
- Labial gesture not only shifts from V_1 into following vowel but is also enhanced.
- Duration of latter part of labial/palatalized gesture may increase.
- Alternatively, greater labialization may cause lower formant values than expected for /u/.

Andrew Garrett & Tyler Lau

The Emergence of Consonant-Vowel Metathesis in Karuk
Prediction: Perceptual Enhancement and V_1 duration

- As V_1 duration decreases, offglide duration increases exponentially.
- Labial gesture not only shifts from V_1 into following vowel but is also enhanced.
- Duration of latter part of labial/palatalized gesture may increase.
- Alternatively, greater labialization may cause lower formant values than expected for /u/.

Andrew Garrett & Tyler Lau
Prediction: F2/F3 and Perceptual Enhancement

- As V_1 weakens, offglide should be expected to be strengthened
- One way to strengthen could be a greater F2 (and F3) difference

Andrew Garrett & Tyler Lau
The Emergence of Consonant-Vowel Metathesis in Karuk
Prediction: Formants and Perceptual Enhancement

- Labialization lowers formants, especially F3 (Beeley, 2015)
- Another way to strengthen would be for offglide formants to be lower than those in /u/
Prediction: Formants and Perceptual Enhancement

• Labialization lowers formants, especially F3 (Beeley, 2015)
• Another way to strengthen would be for offglide formants to be lower than those in /u/
Predictions: Summary

- **Misperception**
 - F2/F3 difference: no correlation with V₁ duration
 - Offglide duration: no correlation with V₁ duration
 - Offglide formants = normal vowel formants

- **Gestural Shift (without perceptual enhancement)**
 - F2/F3 difference: no correlation with V₁ duration
 - Offglide duration: inverse correlation with V₁ duration
 - Offglide formants = normal vowel formants

- **Perceptual Enhancement**
 - F2/F3 difference: inverse correlation with V₁ duration
 - Offglide duration: exponential inverse correlation with V₁ duration
 - Offglide formants < normal vowel formants
Predictions: Summary

- **Misperception**
 - F2/F3 difference: no correlation with V_1 duration
 - Offglide duration: no correlation with V_1 duration
 - Offglide formants = normal vowel formants

- **Gestural Shift (without perceptual enhancement)**
 - F2/F3 difference: no correlation with V_1 duration
 - Offglide duration: inverse correlation with V_1 duration
 - Offglide formants = normal vowel formants

- **Perceptual Enhancement**
 - F2/F3 difference: inverse correlation with V_1 duration
 - Offglide duration: exponential inverse correlation with V_1 duration
 - Offglide formants < normal vowel formants
Predictions: Summary

- Misperception
 - F2/F3 difference: no correlation with V_1 duration
 - Offglide duration: no correlation with V_1 duration
 - Offglide formants = normal vowel formants

- Gestural Shift (without perceptual enhancement)
 - F2/F3 difference: no correlation with V_1 duration
 - Offglide duration: inverse correlation with V_1 duration
 - Offglide formants = normal vowel formants

- Perceptual Enhancement
 - F2/F3 difference: inverse correlation with V_1 duration
 - Offglide duration: exponential inverse correlation with V_1 duration
 - Offglide formants < normal vowel formants
Data Summary

• 95 target tokens in total; 54 have an offglide
• Of those 54
 • 20 have palatal offglide
 • 34 have labial offglide; 3 of these have completely lost V_1
• Intervening consonant counts
 • /k/ = 20
 • /f/ = 14
 • /p/ = 11
 • /x/ = 9
• 51 control /u/ tokens for F2 comparison to labial offglides
 • /xu/ = 20
 • /fu/ = 17
 • /pu/ = 13
• As V_1 shortens, F2/F3 difference barely changes
• No significant correlation of F2 ($r = -0.07, p = 0.6$) or F3 ($r = -0.11, p = 0.42$) difference with V_1 duration
F2/F3 Difference

1. As V1 shortens, F2/F3 difference barely changes
2. No significant correlation of F2 (r = -0.07, p = 0.6) or F3 (r = -0.11, p = 0.42) difference with V1 duration
Offglide Duration

• As V_1 shortens, offglide lengthens ($r = -0.54, p < .001$)

• But relationship actually looks potentially exponential

• Supports gestural shift or perceptual enhancement
Offglide Duration

- As V₁ shortens, offglide lengthens ($r = -0.54$, $p < 0.001$)
- But relationship actually looks potentially exponential
- Supports gestural shift or perceptual enhancement
Offglide Duration

- As V_1 shortens, offglide lengthens ($r = -0.54, p < .001$)
- But relationship actually looks potentially exponential
- Supports *gestural shift* or perceptual enhancement
Formant Comparisons: Offglide vs. Normal /u/

- Target vowel F1 & F3 values significantly lower than in control vowels
- F2 being higher is unsurprising because of transition to /i/
- Lower formants suggest a coarticulation with greater magnitude of labialization
- Supports perceptual enhancement

\[t = -3.26, \ p < 0.01 \quad t = 3.5, \ p < 0.001 \quad t = -3.76, \ p < 0.001 \]
Formant Comparisons: Offglide vs. Normal /u/

- Target vowel F1 & F3 values significantly lower than in control vowels
- F2 being higher is unsurprising because of transition to /i/
- Lower formants suggest a coarticulation with greater magnitude of labialization
- Supports perceptual enhancement

\[t = -3.26, \ p < 0.01 \]
\[t = 3.5, \ p < 0.001 \]
\[t = -3.76, \ p < 0.001 \]
t = -3.26, p < 0.01 \quad t = 3.5, p < 0.001 \quad t = -3.76, p < 0.001

• Target vowel F1 & F3 values significantly lower than in control vowels
• F2 being higher is unsurprising because of transition to /i/
• Lower formants suggest a coarticulation with greater magnitude of labialization
• Supports perceptual enhancement
Formant Comparisons: Offglide vs. Normal /u/

- Target vowel F1 & F3 values significantly lower than in control vowels
- F2 being higher is unsurprising because of transition to /i/
- Lower formants suggest a coarticulation with greater magnitude of labialization
- Supports perceptual enhancement

\[t = -3.26, p < 0.01 \]
\[t = 3.5, p < 0.001 \]
\[t = -3.76, p < 0.001 \]
• Data suggest that neither misperception nor gestural shift can be the whole picture for CV metathesis
• F2 does not seem to be informative
• There is a process of perceptual enhancement as shown by
 • Exponentially increasing offglide duration as V_1 duration decreases
 • Enhancement of labialization in offglides through lowering of F1 and F3
• Data suggest that neither misperception nor gestural shift can be the whole picture for CV metathesis
• F2 does not seem to be informative
• There is a process of perceptual enhancement as shown by
 • Exponentially increasing offglide duration as V_1 duration decreases
 • Enhancement of labialization in offglides through lowering of F1 and F3
Data suggest that neither misperception nor gestural shift can be the whole picture for CV metathesis.

F2 does not seem to be informative.

There is a process of *perceptual enhancement* as shown by:
- Exponentially increasing offglide duration as V_1 duration decreases.
- Enhancement of labialization in offglides through lowering of F1 and F3.
Conclusions

• Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 • A lengthened offglide
 • A higher (= ↓ F1) offglide
 • A more labialized (= ↓ F3) offglide

• Coarticulation with weakening of V₁ and strengthening of offglide eventually leads to complete metathesis.

• Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.
Conclusions

• Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 • A lengthened offglide
 • A higher (= ↓ F1) offglide
 • A more labialized (= ↓ F3) offglide
 • Coarticulation with weakening of V₁ and strengthening of offglide eventually leads to complete metathesis.
 • Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.
Conclusions

• Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 • A lengthened offglide
 • A higher (= ↓ F1) offglide
 • A more labialized (= ↓ F3) offglide
• Coarticulation with weakening of V₁ and strengthening of offglide eventually leads to complete metathesis.
• Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.
Conclusions

- Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 - A lengthened offglide
 - A higher (\(\downarrow \text{F1}\)) offglide
 - A more labialized (\(\downarrow \text{F3}\)) offglide

- Coarticulation with weakening of \(V_1\) and strengthening of offglide eventually leads to complete metathesis.

- Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.
Conclusions

• Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 • A lengthened offglide
 • A higher (= ↓ F1) offglide
 • A more labialized (= ↓ F3) offglide

• Coarticulation with weakening of V₁ and strengthening of offglide eventually leads to complete metathesis.

• Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.
Conclusions

• Speaker-driven perceptual enhancement plays a significant role in the sound change of CV metathesis. In Karuk, this involves:
 • A lengthened offglide
 • A higher (= ↓ F1) offglide
 • A more labialized (= ↓ F3) offglide

• Coarticulation with weakening of V₁ and strengthening of offglide eventually leads to complete metathesis.

• Methodology: opportunistic and legacy recordings can be used to understand the phonetics of sound change.
Yôotva!
Thank you!
References I

