A Bayesian Phylogenetic Internal Classification of the Tupí-Guaraní Family

Lev Michael, Natalia Chousou-Polydouri, Zachary O’Hagan, Keith Bartolomei, Diamantis Sellis, Emily Clem, and Erin Donnelly

University of California, Berkeley

～

Linguistic Society of America Annual Meeting
Portland, Oregon
January 10, 2015
Introduction

The adoption of computational phylogenetic methods originally developed in biology has generated considerable high-profile work in historical linguistics in recent years:

- **Indo-European**: Bouckaert et al. (2012); Forster and Toth (2003); Gray and Atkinson (2003); Nakhleh et al. (2005); Ringe et al. (2002); Warnow et al. (2004)
- **Austronesian**: Gray et al. (2009); Greenhill and Gray (2005, 2009); Greenhill et al. (2010)
- **Pama-Nyungan**: Bowern and Atkinson (2012)

This research has focused principally on the application of phylogenetic methods to lexical data.
The successes in applying phylogenetic methods to historical linguistics is to be expected in certain respects

- Biological phylogenetics is based on a model of evolution that is compatible with linguists’ understanding of diachronic change
- Both biological and linguistic evolution involve descent with modification from a common ancestor, which gives rise to primarily tree-like evolutionary histories
• At the same time, valid application of phylogenetic methods to linguistic data that is both
 • an accurate implementation of the ideas of the Comparative Method
 • and does not violate the mathematical assumptions behind the computational methods

 ...is not a trivial matter

• In this talk, we **first** examine the current standard application of phylogenetic methods to comparative lexical data (Gray and Atkinson 2003), which we dub the ‘G&A method’ and argue that it:
 1. does not implement linguists’ understanding of cognacy;
 2. introduces problematic mathematical artifacts (character non-independence) due to coding implementations

• And **second**, present and compare an alternative method, quasi-cognate coding (‘QC’), that we argue:
 1. more faithfully implements linguists’ understanding of cognacy;
 2. minimizes coding-induced character non-independence
We compare the results of these two methods when applied to a lexical dataset of Tupí-Guaraní languages.

The two methods yield different results:

- The QC coding reveals higher-level structure that the G&A coding results do not identify.
- The QC coding accords better with previous classifications.
Applying Computational Phylogenetics to Linguistic Data

- Phylogenetic methods share basic principles with the Comparative Method, and have become increasingly sophisticated via:
 - evolutionary models
 - Bayesian inference methods
 - computational algorithms
- The application of these tools and methods to linguistic data
 - is not a mechanical procedure;
 - and requires careful thought about the nature of the data and the phylogenetic characters to be extracted from that data
- Here we focus on the impact of these early methodological decisions, prior to phylogenetic analysis per se, on the phylogenetic results:
 - lexical data collection
 - cognate set construction and character coding
Gray and Atkinson (2003) introduced the current standard for applying computational phylogenetic tools to lexical data:

- given a set of meanings (e.g., Swadesh list), a single form is selected
- for each meaning, forms are grouped into n “cognate” sets, resulting in a n-state (multistate) character per meaning
 - The characters are thus members of ‘form-meaning’ sets in which forms are cognate and have the same meaning
 - Such sets are not cognate sets, since forms that may have undergone semantic shift are not members of the same ‘form-meaning’ set
- each multistate character state is recoded as a binary presence-absence character
Potential Problems with G&A Coding

- Loss of ability to capture synapomorphies: features inherited from a common ancestor
 - When a given cognate set is split into multiple form-meaning sets, the fact that the form-meaning sets are related to each other is lost
- Introduction of homoplasies: shared features **not** inherited from a common ancestor
 - Common semantic shifts may occur independently (e.g., ‘dark’ → ‘night’)
 - Thus form-meaning sets based on these meanings conflate multiple origin events (unlike true cognate sets)
- Binary recoding of originally multi-state characters introduces – for mathematical reasons – non-independence between the resulting binary characters
 - This violates a key assumption of phylogenetic algorithms
The potential problems associated with the G&A method led us to develop a method – the quasi-cognate (QC) method – that more closely hews to the assumptions of the Comparative Method.

The quasi-cognate method is characterized by the following:

- Characters are members of true cognate sets (irrespective of meaning)
- Characters are binary (a language has a word that is a member of a given cognate set, or it does not)
Quasi-Cognate Coding Method II

- **Data Collection, Round 1:**
 1. Given a set of meanings, collect for each language all forms with the meaning in question, as well those with similar meanings
 2. Construct cognate sets that include items that have undergone semantic shift

- **Data Collection, Round 2:** in case of apparent absences in cognate sets, search for cognates with the expected form (given deducible sound correspondences) for the language in question

- (The resulting cognate sets are quasi-independent, since we still assume, that in the absence of contrary evidence, if a language has a form expressing meaning A, the language lacks cognates for all other roots primarily associated with meaning A.)
Zeroes & the G&A Method

- For purposes of computational analysis we numerical code our dataset was binary (1/0) presence/absence characters.
- ‘Zeroes’ (0s), indicating absence of a cognate for a particular language, play as significant of a role in the selection of an optimal tree as do ‘ones’ (1s), which indicate the presence of a cognate.
- It is thus important that a ‘0’ in the character table reflect – to as great a degree as possible – a true absence of a cognate in the language, and not merely a gap in documentation or data collection.
- However, in the G&A method, a language receives a ‘0’ for a given form-meaning set either if a cognate has undergone semantic shift, or if there is an empirical gap in the resource.
- Consequently, as normally implemented, this method does not distinguish documentation gaps from true absences.
Zeroes & the QC Coding Method

- We applied a more rigorous standard to ensure that a ‘0’ reflects a true absence
- A cognate was considered absent (coded as ‘0’) for a particular language if all the following conditions were met:
 1. No cognate was found when searching for roots with similar meanings, or for expected forms for the root;
 2. No cognate surfaced in compounds in our dataset;
 3. A non-cognate form was found that expressed the expected meaning
Example of G&A vs. QC Coding

<table>
<thead>
<tr>
<th></th>
<th>OMG</th>
<th>KK</th>
<th>TPN</th>
<th>TPR</th>
<th>PAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>woman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sister</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G&A (Multistate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>woman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sister</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G&A (Binary Recoding)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOMAN1 (*wajnua)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WOMAN2 (*kujā)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SISTER1 (*kujā)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SISTER2 (*iker)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>QC (Binary)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WOMAN1 (*wajnua)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WOMAN2 (*kujā)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SISTER1 (*iker)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Phylogenetic Methods (MrBayes3.2)

- We used an asymmetric binary model (a.k.a. restriction site model)
 - Different rates of gain and loss for cognates
 - Uniform prior for the cognate loss/gain ratio
- We allowed for different rates of evolution across cognate sets
 - Gamma distributed rates
 - Gamma shape parameter had a uniform prior distribution for (0,200)
- Phylogenetic Analysis with MrBayes3.2
 - Analysis conducted with four independent runs
 - 10 million generations each, sampled every 1,000 generations
The Tupí-Guarani Family

- Tupí-Guarani is a well-established subgroup of the larger Tupí stock (Campbell 1997; Jensen 1999; Kaufman 1994, 2007; Rodrigues 1986, 1999; Rodrigues and Cabral 2012)

- First phylogenetic exploration of Tupí: Galúcio et al. (2013)

![Figure 1: Tupí Classification (Drude 2011)]
Data Harvesting

- There are \(\sim 53 \) Tupí-Guaraní varieties spoken in Argentina, Bolivia, Brazil, Colombia, French Guiana, Paraguay, Peru
 - Degree of lexical documentation varies widely
- The lexical database developed for this project includes:
 - 596-item list of crosslinguistically and areally appropriate meanings in
 - 30 TG and 2 non-TG Tupí languages (Mawé and Awetí)
- Data was harvested by Keith Bartolomei, Natalia Chousou-Polydouri, Erin Donnelly, Lev Michael, Sérgio Meira, Zachary O’Hagan, Mike Roberts, and Vivian Wauters from:
 - dictionaries
 - phonological descriptions
 - grammatical descriptions
 - text collections
- Average coverage = 71%
Lexical Coverage

<table>
<thead>
<tr>
<th>Language</th>
<th>Coverage</th>
<th>Language</th>
<th>Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aché</td>
<td>85%</td>
<td>Ñandeva</td>
<td>20%</td>
</tr>
<tr>
<td>Anambé</td>
<td>31%</td>
<td>Omagua</td>
<td>89%</td>
</tr>
<tr>
<td>Araweté</td>
<td>55%</td>
<td>Parakanã</td>
<td>75%</td>
</tr>
<tr>
<td>Avá-Canoeiro</td>
<td>51%</td>
<td>Paraguayan Guarani</td>
<td>94%</td>
</tr>
<tr>
<td>Awetí</td>
<td>76%</td>
<td>Parintintin</td>
<td>85%</td>
</tr>
<tr>
<td>Chiriguano</td>
<td>80%</td>
<td>Pauserna</td>
<td>58%</td>
</tr>
<tr>
<td>Emerillon</td>
<td>77%</td>
<td>Siriono</td>
<td>82%</td>
</tr>
<tr>
<td>Guajá</td>
<td>45%</td>
<td>Tapiete</td>
<td>84%</td>
</tr>
<tr>
<td>Guarayu</td>
<td>86%</td>
<td>Tapirapé</td>
<td>69%</td>
</tr>
<tr>
<td>Ka’apor</td>
<td>83%</td>
<td>Tembé</td>
<td>98%</td>
</tr>
<tr>
<td>Kaiowá</td>
<td>39%</td>
<td>Tocantins Asuriní</td>
<td>83%</td>
</tr>
<tr>
<td>Kamaiurá</td>
<td>75%</td>
<td>Tupinambá</td>
<td>94%</td>
</tr>
<tr>
<td>Kayabí</td>
<td>59%</td>
<td>Wayampí</td>
<td>89%</td>
</tr>
<tr>
<td>Kokama</td>
<td>89%</td>
<td>Xetá</td>
<td>33%</td>
</tr>
<tr>
<td>Mawé</td>
<td>80%</td>
<td>Xingú Asuriní</td>
<td>50%</td>
</tr>
<tr>
<td>Mbyá</td>
<td>83%</td>
<td>Yuki</td>
<td>80%</td>
</tr>
</tbody>
</table>
Tupí-Guaraní Classification: G&A Coding
Comparison of Classifications I

<table>
<thead>
<tr>
<th>QC</th>
<th>G&A</th>
</tr>
</thead>
<tbody>
<tr>
<td>More higher-level articulation</td>
<td>Less higher-level articulation</td>
</tr>
<tr>
<td>More unique nodes</td>
<td>Fewer unique nodes</td>
</tr>
<tr>
<td>Kamaiurá is sister to ‘Nuclear-TG’</td>
<td>Kamaiurá is part of polytomy</td>
</tr>
<tr>
<td>Member of subgroup (Tupinambá, Avá-Canoeiro)</td>
<td>Merged with polytomy (Tupinambá, Avá-Canoeiro)</td>
</tr>
</tbody>
</table>

- G&A results can mostly be obtained from the QC results by eliminating higher-level structure, and merging the affected languages and subgroups into large polytomies.
- They differ in that the loss of higher-level structure in the G&A tree means that well supported subgroups in the QC coding disappear.
Comparison of Classifications II

• Which set of results is more plausible?
• We suggest that the classification that best captures the low-level subgroups recognized by TG specialists is preferred
 • Specialists are likely to have valid intuitions about low-level subgroups
 • There is little consensus regarding higher-level subgroups in the family
• How do the QC results compare with traditional classifications?
• Rodrigues and Cabral (2002): 8 subgroups of 44 TG varieties
 • Modification of the 8 subgroups of Rodrigues (1984/1985)
G&A & QC Tupí-Guaraní Classifications I
G&A & QC Tupí-Guaraní Classifications II

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>G&A</th>
<th>QC</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>II</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>III</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>IV</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>V</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>VI</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VII</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>VIII</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 1: Subgroups Recovered by G&A and QC Codings
Conclusions

• It is clear that G&A & QC coding produce significantly different results when applied to our TG lexical dataset

• We have argued in favor of quasi-cognate coding that it
 • better reflects linguists’ understandings of what constitutes suitable lexical phylogenetic characters;
 • does not violate the character independence assumption of phylogenetic methods;
 • better accords with traditional classifications of lower-level subgroups in the TG family

• It remains an open question to what degree the evident superiority of QC over G&A coding for the TG data set extends to comparable ones for other language families
Acknowledgements

- The following colleagues for generously sharing primary data:
 - Sebastian Drude (Awetí)
 - Sérgio Meira (Mawé, Tembé)
 - Françoise Rose (Emerillon)
 - Eva-Maria Rößler (Aché)
 - Rosa Vallejos (Kokama-Kokamilla)

- Tammy Stark for GIS assistance

- Noé Gasparini for access to Anambé and Yuki data

- And the following Berkeley TG group alumni:
 - Mike Roberts
 - Vivian Wauters

- NSF DEL Award #0966499

- UC Berkeley Social Science Matrix 2013-2014 Grant
References I

References II

GALÚCIO, ANA VILACY; SÉRGIO MEIRA; SEBASTIAN DRUDE; NILSON GABAS JR.; DENNY MOORE; GESSIANE Picanço; CARMEN REIS RODRIGUES; and LUCIANA STORTO. 2013. Genetic Relationship and Degree of Relatedness within the Tupi Linguistic Family: A Lexicostatistical and Phylogenetic Approach. *ms*.

Warnow, Tandy; Steven N. Evans; Don Ringe; and Luay Nakhleh. 2004. Stochastic Models of Language Evolution and an Application to the Indo-European Family of Languages. *Technical Report, Department of Statistics, University of California, Berkeley.*
Lexicostatistics \neq Phylogenetics

- Lexicostatistical Methods (e.g., NeighborNet, SplitsTree)
 - Lexicostatistical methods do not evaluate evolutionary trees
 - They instead compute a single number – e.g., % of shared cognates – for each pair of languages
 - Languages are then clustered on the basis of overall similarity, conflating shared innovations and shared retentions

- Phylogenetic Methods
 - All cognate sets are evaluated individually, and the specific information they bear for subgrouping is preserved
 - Thousands of trees are individually evaluated by optimizing all characters on each one
 - Only shared innovations are considered for subgrouping
 - As a result, phylogenetic methods are not fooled by shared retentions
Homoplasy in G&A

<table>
<thead>
<tr>
<th></th>
<th>GYA</th>
<th>TPN</th>
<th>TPR</th>
<th>PAR</th>
<th>KAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>stomach</td>
<td>?ie</td>
<td>iwe</td>
<td>...</td>
<td>aw</td>
<td>p?ia</td>
</tr>
<tr>
<td>intestines</td>
<td>epo?i</td>
<td>iβiη</td>
<td>ie</td>
<td>ie</td>
<td>p?ia</td>
</tr>
</tbody>
</table>

G&A (Multistate)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>stomach</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>intestines</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>liver</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

G&A (Binary)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STOMACH1 (*iwe)</td>
<td>1</td>
<td>1</td>
<td>?</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>STOMACH2 (*aβ)</td>
<td>0</td>
<td>0</td>
<td>?</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>STOMACH3 (*p?ia)</td>
<td>0</td>
<td>0</td>
<td>?</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>INTESTINES1 (*epo?i)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INTESTINES2 (*iβiη)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INTESTINES3 (*iwe)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>INTESTINES4 (*p?ia)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>LIVER1 (*p?ia)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

QC (Binary)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STOMACH1 (*aβ)</td>
<td>0</td>
<td>0</td>
<td>?</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>INTESTINES1 (*epo?i)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INTESTINES2 (*iβiη)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>INTESTINES3 (*iwe)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>LIVER1 (*p?ia)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>