Thai Quantifier Float as Quantifier Raising

Peter Jenks
Harvard University

pjenks@fas.harvard.edu

GLOW in Asia 8
Beijing, China
August 2010
Outline

1. Introduction

2. Quantifier float in Thai
 Basics of Thai structure
 Quantifier float basics
 Locality constraints on Q-float
 Q-float and scope

3. Quantifier Float as Quantifier Raising
 Right adjunction and scope
 Linearizing Q-float

4. Conclusion
The Phenomenon

- Q-float in Thai:

(1) นักเรียนสามคน [VP สามคน แล้ว] นักเรียน 3-CL person read book already

'Three students read a book already.'
The Phenomenon

• Q-float in Thai:

(1) **nák.riian** [vp ?aan nàŋsǔu leéw] sǎam-khon
student read book already 3-cl\(_{\text{person}}\)
‘Three students read a book already.’
Questions

Questions for an analysis of Thai Q-float

1. What is the structural position of the FQ?
2. Only quantifiers float — what makes them special in that regard?
3. Is Q-float base-generated or is movement involved?
The answers to these questions connect Q-float to QR.

1. Subject and object FQs are right-adjointed to the clausal spine.
2. Quantifiers need to have scope in certain positions; Q-float affects scope.
3. Q-float is subject to locality constraints, implicating movement.
Sketch of the analysis

- The claim: Thai Q-float is an overt instance of QR.

\[(2) \quad a. \quad \text{nák.riian} \ [VP \ ?aan \ nàŋsûm \ mûñawaammí] \ sãam-khon\]
\[\text{student} \quad \text{read} \quad \text{book} \quad \text{yesterday} \quad 3-\text{CL}^\text{person}\]
\[\text{‘Three students read a book yesterday.’}\]

- A further claim: Q-float is DP movement where a chain is spelled out in two different positions.

- This argues for syntactic theories of scope inversion, i.e., the existence of QR more generally.
Basics of Thai structure

- Thai is an analytic language with isolating morphology:

 (3) phûuak dèk khəy duu nǎŋ waan-níí
 PL child PRF watch movie day-this
 ‘The children have watched a movie today.’

- Rigid S-V-O-Adv word order.
- No inflectional morphology: Thai lacks obligatory tense or agreement on verbs or number on nouns.
- Bare nouns can appear as arguments.
Thai as a classifier language

- Distributive quantifiers require a numeral classifier:

(4) a. khruu 3-khon teacher 3-CL_{person} ‘(the) three teachers’

b. khruu thúk-khon teacher every-CL_{person} ‘every teacher’

- Thai DPs have the order N-Num-Clf, which is obligatory. Several proposals derive this order by NP movement (Simpson, 2005; Singhapreecha, 2001; Visonyanggoon, 2000).
Quantifiers float from subjects and objects

- The ability of Thai quantifiers to “float” to the right edge of the sentence is possible for both subjects (5) and objects (6).

(5) a. นักเรียน สามคน [VP สามคน] นักเรียน สามคน
 student 3-CL{person} read book yesterday

 b. นักเรียน [VP สามคน] นักเรียน สามคน
 student 3-CL{person} read book yesterday
 (both) ‘Three students read a book yesterday.’

(6) a. นักเรียน [VP สามคน] นักเรียน สามคน
 student 3-CL{volume} already

 b. นักเรียน [VP สามคน] นักเรียน สามคน
 student 3-CL{volume} already
 (both) ‘The students have already read every book/two books.’
The quantifiers that float

- Quantifiers which do not require a classifier, such as ทั้งหมด ‘all’, can also float.

(7) a. นักเรียนทั้งหมด [VP ผาน เขียน หนังสือ แล้ว]
 student all-EXT read book already

b. นักเรียน [VP ผาน เขียน หนังสือ แล้ว] ทั้งหมด
 student read book already all-EXT
 (both) ‘All the students read a book yesterday.’
The special status of Q-float

- Simpson (2004) suggests that Q-float in Thai is a form of extraposition.
- But Thai does not have relative clause extraposition:

\[(8) \begin{align*}
\text{a. } & \quad [\text{DP dèk } [\text{CP thïi phûut thai dâi }]] \text{ gàb bân dâi.léew} \\
& \quad \text{child REL speak Thai can return home already}
\end{align*}
\begin{align*}
& \quad \text{‘The child that can speak Thai already went back home.}
\end{align*}
\begin{align*}
\text{b. } & \quad *[\text{DP dèk }] \text{ gàb bân dâi.léew } [\text{CP thïi phûut thai dâi }]
\end{align*}
\begin{align*}
& \quad \text{child return home already REL speak Thai can}
\end{align*}
\]

- Extraposition from objects and the extraposition of other modifiers, such as PPs, is impossible as well.
- **Conclusion**: Q-float is not part of a more general phenomenon of rightward movement.
Locality constraints on Q-float

- Previous work on Thai Q-float has shown that it is subject to locality constraints (Simpson, 2004): it is limited to argument NPs.
- Possessives NPs in Thai follow the preposition *kh∅on* ‘of, belonging to.’

(9) a. Pong c`a [VP h`ay [DP nɔːŋs`u kh∅on [DP d`ēk 2-khon]] k`ap N`at]
Pong will give book POSS child 2-CL_{person} to Nat
‘Pong will give the two children’s book to Nat.’

b. *Pong c`a [VP h`ay [DP nɔːŋs`u kh∅on [DP d`ēk]] k`ap N`at] 2-khon
Pong will give book POSS child to Nat 2-CL_{person}

- The same is true for NP complements and NPs within relative clauses.
- These locality constraints implicate movement, which cannot cross multiple phase (e.g. DP) boundaries.
Quantifier float and scope

- Q-float in Thai affects the scope of the FQ relative to negation:
 - Q-float lowers the scope of subject quantifiers.
 - Q-float raises the scope of object quantifiers.
The scope of subject FQs

- **Q-float lowers the scope of subject quantifiers.**
- **We can see this with the quantifier sák ‘even one,’ an NPI.**
- **NPIs must be c-commanded by negation.**

(10)

a. *Paacaan sák-khon yaŋ mái [VP tii nák.riian]
 teacher even.one-CL person still NEG hit student
 ‘Not even one teacher has hit a student.’ (intended)

b. Paacaan yaŋ mái [VP tii [DP nák.riian sák-khon person]]
 teacher still NEG hit student even.one-CL person
 ‘Teachers haven’t hit even one student’

- **Sák** cannot quantify over subjects, above negation (10a).
- **Yet sák** can quantify over objects, inside of a negated VP (10b).

Peter Jenks (pjenks@fas.harvard.edu)
NPIs as subject FQs

- As an NPI, *sák* can be used as a diagnostic for the structural position of FQs relative to negation.

\[(11) \text{ a. } \text{Nák.riian sák-khon yañ mâi [VP kin khâaw] student even.one-CL^person still NEG eat rice}
\]
- ‘Not even one student has eaten.’ (Intended)

\[(11) \text{ b. } \text{Nák.riian yañ mâi [VP kin khâaw] sák-khon student still NEG eat rice even.one-CL^person}
\]
- ‘Not even one student has eaten.’

- (11b) shows *sák* can occur as an FQ, even if associated with a subject.
- **Conclusion**: Subject FQs are structurally lower than subjects, and can be c-commanded by negation.
Further evidence

- **Conclusion**: Subject FQs are structurally lower than subjects, and can be c-commanded by negation.

- **Floated vs. in-situ universal quantifiers and negation**

 (12)
 a. \(\text{Nák.riian thûk-khon (yâŋ) mái [VP kin khâaw]} \)
 \text{student every-CL^person still NEG eat rice}
 ‘Every student still hasn’t eaten.’
 \(\forall > \neg, *\neg > \forall \)

 b. \(\text{Nák.riian (yâŋ) mái [VP kin khâaw] thûk-khon} \)
 \text{student still NEG eat rice every-CL^person}
 ‘Every student still hasn’t eaten.’
 \(\forall > \neg, \neg > \forall \)

- Once again, Q-float serves to narrow the scope of the subject quantifier.
The scope of object FQs

- While Q-float can lower the scope of subject quantifiers, it can raise the scope of object quantifiers.
- Quantifiers in object position must scope below negation, while a floated object quantifier can scope above negation.

(13) a. Joe mái [VP phóp nákriian thúk-khon] mûñawaamníi
 Joe NEG meet student every-CL\textsubscript{person} yesterday
 ‘Joe didn’t meet all of the students yesterday’

 *∀ > ¬, ¬ > ∀

 b. Joe mái [VP phóp nákriian] mûñawaamníi thúk-khon
 Joe NEG meet student yesterday every-CL\textsubscript{person}
 ‘Joe didn’t meet all of the students yesterday’

 ∀ > ¬, ¬ > ∀

- Conclusion: Object FQs are structurally higher than objects, and can c-command negation.
Summary of scope facts

- Q-floating affects the scope of FQs relative to negation by
 1. permitting a narrower interpretation for subject Qs.
 2. permitting a wider interpretation for object Qs.

(14)

<table>
<thead>
<tr>
<th>Type</th>
<th>Scope Expression</th>
<th>Negation</th>
<th>Universal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject-Q</td>
<td>NP-∀ ... ¬ ...</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Subject-FQ</td>
<td>NP ... ¬ ... ∀</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object-Q</td>
<td>... ¬ ... NP-∀ ...</td>
<td></td>
<td>×</td>
</tr>
<tr>
<td>Object-FQ</td>
<td>... ¬ ... NP ... ∀</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- The scopal effects are different with multiple quantifiers, but we will not have time for these today.
Overview of the analysis

- The analysis consists of five main ingredients:
 1. A theory of quantifier raising/lowering.
 2. A theory of left vs. right specifiers.
 3. A principle requiring that scope be transparently reflected in the syntax (Bobaljik and Wurmbrand, 2008).
 4. A principle requiring that nouns be pronounced in their case positions in analytic languages.
 5. A constraint on the distribution of discontinuous DPs.

- Some of these have been proposed before, some must be modified, and (4) is completely new.
Johnson and Tomioka (cf. 1997) argue that QR consists of movement/reconstruction to the vP field.

1. Object quantifiers raise to a projection above the subject trace.
2. Subject quantifiers reconstruct/lower to a position below objects.

\[(15)\]
QR and adjunction

• Most analyses of QR propose that these scope positions of quantifiers are clausal adjuncts.
• However, adjuncts in Thai are on the right:

\[(16)\]

```
TP
  /
 /    
/     
DP    vP
|     /
|    /  
|   /   
| /    
|/     
some boy       every girl
```

Peter Jenks (pjenks@fas.harvard.edu)
Q-float as right adjunction

- Because quantifiers are on the right in Thai, they could be attached to one of any positions:

(17)

```
(17)  
    CP
   / 
  CP  FQ
 /     
C     TP
|      / 
|     TP  FQ
|     /   
|    T    VP
|   /     
|  VP      FQ
| /       
V NP
```
Recall that FQs can be c-commanded by negation, which is represented as adjunction to vP, below NegP:

(18)

a. Nák.riian (yaŋ) mái [vP kin khāaw] sák-khon
student still NEG eat rice even.one-CLperson
‘Not even one student has eaten.’

b.

\[
\text{TP} \\
\text{NP}_1 \quad \text{T'} \\
\quad \text{nák.riian} \\
\quad \text{T} \\
\quad \text{NegP} \\
\quad \text{Neg} \quad \text{vP} \\
\quad \text{mái} \\
\quad \text{vP} \quad \text{VP} \\
\quad \text{kin khāaw} \\
\quad \text{QP}_1 \\
\quad \text{t}_1 \text{sák-khon}
\]
Ambiguity relative to negation

- The different scope readings available for FQs are due to different positions available to negation (Visonyanggoon, 2000, §5.5):

\[(19) \quad \text{a. } Q > \text{Neg} \quad \text{b. } \text{Neg} > Q\]
Right adjunction and adverbs

- Evidence from adverbs also supports right-adjunction.
- While FQs cannot occur to the left of manner adverbs:

\[
\begin{align*}
(20) \quad & \text{a. nák.riian [ʔaan nàŋsūŋ] rew-rew 2-khon} \\
& \text{student read book quickly 2-CL\text{person}} \\
& \text{‘Two students read the book quickly.’} \\
& \text{b. *nák.riian [ʔaan nàŋsūŋ] 2-khon rew-rew} \\
& \text{student read book 2-CL\text{person} quickly}
\end{align*}
\]

- FQs can order freely with higher adverbs such as temporal adverbs:

\[
\begin{align*}
(21) \quad & \text{a. nák.riian [ʔaan nàŋsūŋ] mûŋawaanníi 2-khon} \\
& \text{student read book yesterday 2-CL\text{person}} \\
& \text{b. nák.riian [ʔaan nàŋsūŋ] 2-khon mûŋawaanníi} \\
& \text{student read book 2-CL\text{person} yesterday} \\
& \text{(both)‘Two students read the book yesterday.’}
\end{align*}
\]

- These facts indicate that FQs can attach above VP and below TP.
Complications

- Two remaining issues for an analysis of Q-float as rightward QR:
 - **Problem 1** Why is movement/adjunction to the right in this case?
 - **Problem 2** QR involves movement of the whole DP, but Q-float only involves overt movement of the Q-Clf constituent.
Excursus on right-adjunction

- Assume a theory where specifiers and adjuncts are the same thing (Kayne, 1994), but multiple specifiers are allowed (Chomsky, 1995; Ura, 1996).

- Modifying the approach of Fox and Pesetsky (2009), suppose that specifiers can be linearized on the right or the left in SVO languages, determined by specific syntactic factors:

 - **Specifiers on the left:**
 - Fully valued features and
 - Selected by the projecting head

 - **Specifiers on the right:**
 - Unvalued features or
 - Not selected by the projecting head
Excursus on right-adjunction

Specifiers on the left: 1) Fully valued features and 2) selected by the projecting head.

Selected by C, valued wh feature \Rightarrow

Selected by T, valued case feature \Rightarrow
Excursus on right-adjunction

Specifiers on the right: 1) Unvalued features or 2) not selected by the projecting head.

```
TP
   /\      PP
  /   \    \
  TP   vP  ⇐ Temporal adjunct, unselected by T
     /\    \
    vP DP_{uk}  ⇐ Subject trace, unvalued case feature
       \   \n       v   ...
```
Subject Q-float

- This allows us to maintain a view of subject Q-float where the FQ is simply the vP-internal position of the subject (Sportiche, 1988):

- The fact that the FQ marks the predicate-internal subject position accounts for the scope-lowering effect of Q-float.
The bipartite structure of quantification

• Quantifiers take two arguments, a restrictor and a scope.

(22) a. All dogs are mammals.
 b. \(\text{all} = \lambda P \lambda Q \forall x (P(x) \to Q(x)) \)
 c. \(\forall x (D(x) \to M(x)) \)

• In the example above, dogs is the restrictor of all and are mammals is its scope.

• Quantificational determiners such as ‘all’ combine with their restrictor argument before their scope argument.
Q[float as DP movement

• As FQs are interpreted in their floated position, their host noun must be interpreted there as well.
• This means that Q-float should be represented as DP-movement.

(23) *[\text{VP klæb båan}] \text{nák.riian thúk-khon}
return home student every-CL\text{person}

• But (23) shows that the noun cannot appear there.
• Proposal: While (23b) is the correct derivation, principles of chain pronunciation conspire to produce a discontinuous DP at PF.
Pronouncing Q-float

- Assuming the copy theory of movement, suppose the following two principles govern the pronunciation of chains:

 Scope Transparency Pronounce scopal elements where they are interpreted (cf. Bobaljik and Wurmbrand, 2008).

 Analytic NP Principle Pronounce nouns in their case (feature-valued) position.
Scope Transparency and the 3/4 signature

- Scope Transparency (my version)
 Pronounce scopal elements where they are interpreted.
- This accounts for the rigid scope of subject and object quantifiers.

(24) a. Joe mái [VP phóp nákriian thúk-khon] mûuawaanníi
 Joe NEG meet student every-CL\textsubscript{person} yesterday
 ‘Joe didn’t meet all of the students yesterday’

b. Joe mái [VP phóp nákriian] mûuawaanníi thúk-khon
 Joe NEG meet student yesterday every-CL\textsubscript{person}
 ‘Joe didn’t meet all of the students yesterday’

- (24a): *∀ > ¬, ¬ > ∀, so the lower copy is pronounced.
- (24b): ∀ > ¬, ¬ > ∀, so the higher copy is pronounced (recall that the position of negation is variable).
- Connection: Hasegawa (1993) observes that FQs in Japanese have fixed scope, a possible extension for this approach.
Pronouncing the Noun

- The noun in Thai can always be pronounced in its case position. I propose this is a general property of SVO languages without case or agreement morphology:

 Analytic NP Principle If the syntactic role of an NP is not indicated by case or agreement morphology, then NPs must be pronounced in their case position.
More on the Analytic NP Principle

- This principle may account for why many analytic SVO languages share the following properties:
 1. Rigid word order
 2. Wh-in-situ
 3. Resumptive pronouns in relative clauses
 4. Subject and object pro-drop (i.e. Topic-drop, Huang 1984)

- The last point is derived from the fact that the position of the noun is always predictable, hence, it can be omitted.
Deriving Q-float

- The conflicting requirements of Scope Transparency and the Analytic NP Principle conspire to produce Q-float, which is actually DP movement:

\[
\begin{array}{c}
\text{vP} \\
\text{vP} \\
v \quad \text{VP} \\
v \quad \text{QP} \\
V \\
\text{QP} \\
dek \; thuk \; khon
dek \; thuk \; khon
\end{array}
\]

- Scope Transparency is only concerned with the “scope-marking element,” here, the quantifier.
Now it turns out that Q-float is actually quite common in classifier languages. In fact, we always find it in certain classifier languages, as stated by the following generalization:

(25) **Quantifier-Classifier Float Generalization** (Jenks, 2010)
If a classifier language allows the DP-internal order Noun-Number-Classifier, then the Number-Classifier constituent can float.

Ongoing work has found that this generalization is exceptionless: Khmer, Kayah Li, and Thai (all SVO), Burmese, Japanese, Korean, Lisu, and Yi (all SOV) all have quantifier float and have Noun-Number-Classifier as their DP-order.

In every case, this “float” is to the right.
Accounting for the Q-Clf Float Generalization

(26) **Quantifier-Classifier Float Generalization**
If a classifier language allows the DP-internal order Noun-Number-Classifier, then the Number-Classifier constituent can float.

- If DP is a spell-out domain, the following constraint on spell-out can account for the generalization:

(27) **Order Preservation**
If \(\alpha \) precedes \(\beta \), where \(\alpha, \beta \) are only in the spell-out domain of phase \(\phi \), then \(\alpha \) must precede \(\beta \) throughout the derivation.

- In the case of Q-float, since N precedes Q-Clf internal to the DP, which I assume is a phase, then N and Q-Clf can be spelled out discontinuously just in case N still precedes Q-Clf.
Summary

- Q-float in Thai DP is movement motivated for scope reasons.
- This movement is Quantifier Raising (QR), explaining why it is restricted to quantifiers.
- The discontinuity of the DP in Q-float is due to conflicting requirements on chain pronunciation at PF.
- One of these requirements is the Analytic NP Principle, accounting for the absence overt dislocation phenomena in analytic languages.
References I

Fox, Danny, and David Pesetsky. 2009. Rightward movement, covert movement, and cyclic linearization. Class handout, MIT.

