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Abstract

Since Warren and DuBois (D.W. Warren, A.B. DuBois, Cleft Palate Journal 1 (1964) 52-71), the “Pressure—Flow
technique” has been widely used to estimate constriction areas within the vocal tract. In this paper, three fundamental
questions regarding this technique are addressed: (1) What exactly is measured (minimum, maximum or “mean’ areas)?
(2) What degree of accuracy can be expected from this technique? (3) To what extent can this method be applied to
unsteady flow conditions? A theoretical and experimental study based on a mechanical vocal tract model, including
various constriction shapes, is presented. The pressure—flow technique is shown to be relatively insensitive to the exact
constriction shape (circular, uniform or diverging), and the estimated area to be close to the minimum area of the
constriction. This result can be theoretically rationalised by considering that in all cases studied here, the flow sepa-
ration point is always close to the minimum constriction. Compared with much more complex viscous flow solutions, a
simple one-dimensional flow model is shown to yield fair estimates of the areas (within 20%), except for low Reynolds
numbers flows. The empirical head-loss factor, or flow coefficient, £ = 0.65, sometimes used, appears to be disputable
and is probably due to an experimental artefact. Lastly these results are extended to the case of unsteady flow. © 2001
Elsevier Science B.V. All rights reserved.

Zusammenfassung

Seit den Arbeiten von Warren und DuBuis (D.W. Warren, A.B. DuBois, Cleft Palate Journal 1 (1964) 52-71), ist die
“Druck—Flusstechnik” oft benutzt worden, um Schatzungen der Konstriktionsfliche der Vokaltrakt zu erhalten. Dieser
Artikel versucht, drei grundlegende Fragen zu beantworten, was diese Technik betrifft: (1) Welche Menge wird ge-
messen (die minimale, maximale oder “‘durchschnittliche” Flache)? (2) Welche Genauigkeit kann man von dieser
Technik erwarten? (3) Ist es moglich, diese Technik auf die Bedingungen von instationarem Abfluss anzuwenden? Hier
wird eine theoretische und experimentelle Studie beschrieben, die ein Modell der Vokaltrakt benutzt, das verschiedene
Konstriktionsformen darstellen kann. Es wird gezeigt, dafl die genaue Form der Konstriktion (kreisformig,
gleichformig oder auseinanderlaufend) wenig Einfluss auf die “Druck-Flusstechnik” hat, und es erscheint, daf§ die
geschitzte Flache nahe der kleinsten Flache der Konstriktion ist. Dieses Ergebnis kann in der Theorie durch die
Tatsache erklart werden, daf} in allen hier untersuchten Fallen der Trennungspunkt des Abflusses immer nahe an der
Stelle der kleinsten Konstriktion ist. Im Vergleich zu anderen komplexeren Losungen liefert ein einfaches eindimen-
sionales Modell bereits eine verniinftige Schatzung der Flachen (mit einem Spielraum von ca. 20%) aufler fiir niedrige
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Reynoldssche Zahlen. Der Verlustkoeffizient empirischer Last (flow coefficient), k£ = 0.65, der manchmal benutzt wird
erscheint sehr diskutierbar, denn er stammt wahrscheinlich von einem experimentellen Kunstprodukt. SchlieSlich wird
die Ausweitung dieser Ergebnisse auf den Fall eines instationdren Abflusses zur Sprache gebracht. © 2001 Elsevier
Science B.V. All rights reserved.

Résumé

Depuis les travaux de Warren et DuBois (D.W. Warren, A.B. DuBois, Cleft Palate Journal 1 (1964) 52-71), la
technique de “pression—débit” a été fréquemment utilisée afin d’obtenir des estimations de I’aire de constrictions du
conduit vocal. Cet article tente de répondre a trois questions fondamentales concernant cette technique: (1) Quelle est la
quantité mesurée (’aire minimum, maximum ou “‘moyenne’’)? (2) Quelle est la précision que I’on peut attendre de cette
technique? (3) Est-il possible de I'appliquer a des conditions d’écoulement instationnaires? Une étude théorique et
expérimentale utilisant une maquette du conduit vocal pouvant présenter différentes formes de constrictions est décrite.
Il est montré que la technique de pression-débit est peu sensible a la forme exacte de la constriction (circulaire, uniforme
ou divergente) et il apparait que l'aire estimée est proche de ’aire minimum de la constriction. Ce résultat peut s’ex-
pliquer théoriquement par le fait que, dans tous les cas étudiés ici, la position du point de séparation de I’écoulement est
toujours proche de la constriction minimale. Par comparaison avec d’autres solutions plus complexes, un simple modele
unidimensionnel fournit déja une estimation raisonnable des aires (a 20% pres) sauf pour des nombres de Reynolds
faibles. Le coefficient de perte de charge empirique (flow coefficient), & = 0.65, qui est parfois utilisé apparait tres
discutable car il est probablement lié a un artefact expérimental. Enfin, I'extension de ces résultats au cas d’un

écoulement instationnaire est abordée. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Speech production studies are conditioned by
the possibility of acquiring articulatory and aero-
dynamic data on human subjects producing con-
tinuous speech. For a long time the pressure-flow
technique has thus been used as an indirect and
non-invasive way to determine constriction areas
within the vocal tract: oral constriction (Hixon,
1966; Scully, 1986; Stromberg et al., 1994; Shadle
and Scully, 1995), velopharyngeal opening (War-
ren and DuBois, 1964; Guyette and Carpenter,
1988; Zajac and Yates, 1991), or glottal area (Mair
and Scully, 1996).

The pressure—flow method involves two simul-
taneous measurements. The pressure drop across
the constriction is obtained by a pressure trans-
ducer connected to the main cavity behind the
constriction by a tube inserted either through the
lips or through the nose or simply estimated from
the oral pressure (Mair and Scully, 1996). The air
flow through the vocal tract is usually measured
with a circumferentially vented pneumotacho-
graph (Rothenberg, 1973).

Using these pressure drop and flow velocity
measurements, Warren and DuBois (1964) have
proposed a very simple semi-empirical formula,
the Orifice equation, to estimate constriction areas
within the vocal tract during speech. This Orifice
equation relies on an empirical “flow coefficient”,
k, introduced to fit the experimental data. The
accuracy and the relevance of this flow coefficient
have been since then widely and controversially
discussed in the literature (e.g., Warren and
Devereux, 1966; Muller and Brown, 1980; Yates
et al., 1990). The primary goal of this study is to
determine theoretically and experimentally the
relevance and the accuracy of this technique. In
particular, it must be noted that the pressure—flow
method has been derived and tested under a single
condition: using a straight uniform tube of known
area inserted inside a human vocal tract or inside a
model of the vocal tract. In real life, the constric-
tions involved during speech production do not
have such a simple shape and are instead essen-
tially non-uniform. Under these circumstances,
one can reasonably wonder what exactly is mea-
sured using the pressure—flow method.
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Finally, although already used in phonetic ex-
periments (Mair and Scully, 1996), the method has
never been tested under unsteady flow conditions,
the last question addressed in this paper will be: to
what extent can this method be extended to un-
steady flow conditions such as those existing dur-
ing the production of voicing and plosive sounds?

2. Theoretical study

In this paper, a constriction is defined as being
formed by an abrupt reduction of the vocal tract
area, the inlet, followed by an expansion, the
outlet as depicted in Fig. 1.

From a fluid mechanical point of view, the flow
through such a configuration is subject to local or
global variations due to pressure losses. Quite
generally, these losses are a function of the flow
characteristics as well as of the constriction ge-
ometry,

AP = f(flow, geometry).

The idea of the pressure—flow method is to deter-
mine theoretically or empirically a general ex-
pression for f. Given f, a measure of the flow
velocity, and of the pressure losses, AP, one can
then expect to retrieve some information about the
constriction area.

In the case of speech, the strongest pressure
losses are due to the phenomenon of flow separa-
tion at the outlet of the constriction. This phe-
nomenon is due to the presence of a strong adverse
pressure gradient which causes the flow to decel-

erate so rapidly that it separates from the walls to
form a free jet. Associated with flow separations,
they are very strong pressure losses due to the
appearance of turbulence downstream of the
constriction. As a matter of fact, the pressure re-
covery past the flow separation point is so small
that it can in general be neglected.

As the air flow velocity is much smaller than the
speed of sound (low-Mach number flow) it can be
assumed that the flow is incompressible. Further,
in the following only steady vocal tract conditions
are considered (i.e., the vocal tract walls are rigid).
The principle of mass-conservation, thus yields the
following relationship:

@ = v- A = constant, (1)

where @ is the volume flow velocity, v and A4 are
respectively, the (local) flow velocity and vocal
tract area. As both v and A4 are unknown, another
equation, obtained from the principle of momen-
tum conservation, is necessary.

2.1. Bernoulli solution

As the most simple approximation, all viscous
effects are neglected here. However, the fact that
the flow is separating is a consequence of the vis-
cosity and has a large influence. Without separa-
tion, there would be no pressure drop across a
constriction, and thus no flow control. In order to
account for this effect, an ad-hoc assumption of
flow separation is necessary. This leads to the well-
known one-dimensional equation for the velocity
at the point of separation (Blevins, 1992),

Flow separation point

Air Flow
direction

—

Inlet Minimum Area

Turbulence

Outlet

Fig. 1. Schematic view of the flow through a constriction.
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1
AP:zpvsv (2)

where AP is the (measured) pressure drop across
the Orifice, vs the velocity of the flow at the sepa-
ration point and p is the (constant) air density.

In this equation, the kinetic energy behind the
constriction is neglected. It is assumed in the fol-
lowing that the flow separates from the walls of the
vocal tract at the minimum constriction point,
A = Amin. Together with this ad-hoc assumption,
Eqgs. (1) and (2) allow a prediction of the minimum
constriction area, A,

P
min =i 3
nin = T AB] ) ®)

2.2. Boundary-layer solution

As explained in the previous section, the flow
separation point is a crucial parameter which
cannot be predicted by inviscid solutions.

Based on a previous work on glottal flow
modelling (Pelorson et al., 1994), an approximate
but computationally efficient prediction based on
boundary-layer theory is proposed. It has been
shown indeed that, for Reynolds numbers
Re =v-h/v=0(10%), where h is the constriction
height and v the kinematic viscosity coefficient, this
flow model was able to predict the flow separation
point x,, defined as the point for which (Pelorson
et al., 1995)

ov
<a>walls B 0, (4)

where n is the coordinate normal to the constric-
tion walls. Given x,, one can then determine the
minimum constriction area, 4n,;,, by using Egs. (1)
and (2).

2.3. Additional corrections to the Bernoulli solution

2.3.1. Poiseuille correction

At low Reynolds numbers (when the constric-
tion is narrow and/or the flow velocity is small) the
preceding solutions are not accurate, due to the
presence of strong (irreversible) viscous losses
within the constriction. The simplest way to ac-

count for these losses is to consider a Poiseuille
term as an extra pressure drop in Eq. (2). For in-
stance, for a straight uniform rectangular channel
of width w and length L, ' one obtains

12uw’L
A3

min

APPoiseuille = ¢7 (5)

where u is the dynamic viscosity coefficient.

Together with Egs. (1) and (2), the use of a
Poiseuille correction (5) yields to a third order
polynomial equation for Ay,

APA . — % pP* Ammin — 12uw*Ld = 0. (6)
Different, but still equivalent, formulations can be
obtained in the case of other cross-sectional
shapes. These formulations are, in general, not
analytical and require a numerical integration of
the momentum equation along the channel profile.

2.3.2. Unsteady Bernoulli solution

The solutions presented above are based on the
assumption of a steady flow. This is obviously not
the case when considering the release of a plosive
or glottal areas during phonation. Unsteady flow
effects can be accounted for by considering the
unsteady form of the Bernoulli equation. Ne-
glecting the effects of walls motion, this yields to
the addition of a pL(dv/d¢) term in Eq. (2) and
thus to the following solution for Ay,:

2
pLYE + \/(pL%—f) + 2pAPP’

Amin =
2AP ™)

In practice, (d®/dr) is, in general, not measurable
but can be fairly estimated by a numerical deri-
vation of the measured flux, .

2.4. Link with the Orifice equation

From empirical considerations, Warren and
DuBois (1964) have proposed the following for-

! The width is defined here as the dimension of the constric-
tion perpendicular to the flow direction, while the length is the
dimension parallel to the flow.



X. Pelorson | Speech Communication 35 (2001) 179-190 183

mula, the Orifice equation, to predict a constric-
tion area, A4:

P

4 k\/2AP/p’ ®)
where the flow coefficient k is an empirical con-
stant. From their experiments Warren and DuBois
found a value of k ranging from 0.59 up to 0.72
and prescribed the use of the average value
k = 0.65.

This simple formula appears thus to correspond
to the Bernoulli solution presented in Section 2.1,
but assuming a considerable pressure loss within
the constriction. Further, the authors did not
specify explicitly what area, A, was concerned. In
the following, we will assume that this Orifice
equation applies for the estimation of the mini-
mum constriction area: 4 = Apy;,.

3. Experimental study
3.1. Steady flow measurements
3.1.1. Set-up

In order to test the above theoretical predic-
tions, the following experimental set-up was de-

signed. It consists of a replica of a constriction.
Three constriction shapes were considered, as
shown in Fig. 2:

¢ a uniform one, with a rounded entrance,

e a circular one,

e and a diverging one.

All constrictions have the same width w = 3.4 cm.
For each shape, three to four apertures and thus
minimum areas were considered (ranging from
0.17 to 1.02 cm?). Apertures were measured and
controlled using calibrated plates with a typical
accuracy of 0.05 mm. Steady flow conditions were
obtained using an air supply controlled by a valve.
To avoid possible effects of turbulence generated
near the valve, the air flow was carried to the
constriction model using a 2 m long squared
straight pipe. Downstream of the constriction, a
second straight pipe (of 0.2 m) was connected to
simulate the vocal tract. Both upstream and
downstream pipes had a cross-section area of
3.4 x 3.4 cm?. Pressures along the model were
measured using an ultra low pressure transmitter
(Ashcroft, XLdp) or subminiature piezo—electrical
pressure transducers (Kulite, XCS 0932G). Cali-
bration of the pressure sensors was made against a
water meter, with a typical accuracy for AP of less
than 1 Pa. Air flow velocity was measured using

10 mm 10 mm
<> <> < >
20 mm 20 mm 34 mm
Side views Front view

Fig. 2. Three constrictions used in this study.
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either a Pitot tube or a hot-wire (Kimo
TP03.0100).

In the following, we will compare different es-
timation methods. As a measure for the accuracy
of each estimation, we use the relative error de-
fined by

Areal - Aesl

error = x 100,

real

where A, 18 the real (known) constriction mini-
mum area and A, an estimation of this latter
quantity using the measured pressure and flow
velocity. All results will be displayed as a function
of the Reynolds number, Re. For reference, typ-
ical Reynolds numbers involved during speech are
estimated to reach values as high as a few thou-
sands.

3.1.2. Uniform geometry

The uniform geometry is of particular interest
here as it allows a comparison of the four predic-
tions regardless of the position of the flow sepa-

X. Pelorson | Speech Communication 35 (2001) 179-190

ration point (which is here always at the end of the
channel). Figs. 3 and 4 present two examples of
results concerning the relative error of the mini-
mum constriction area, Apm;,.

Fig. 3 displays results for low to average Rey-
nolds number flow conditions. It can be seen that
the Orifice equation overestimates by about 30%
while the other three solutions are within 20%
accuracy. For Reynolds numbers, Re > 1500, the
Boundary-layer solution provides the best estimate
for A, (With an accuracy of the order of 5%),
while at lower Reynolds numbers, the inclusion of
a Poiseuille term leads to a more accurate estimate.
This result was expected: at low Reynolds num-
bers, because the flow becomes fully viscous and,
by definition, the Boundary-layer concept does not
apply any longer (Schlichting, 1968). Fig. 4 dis-
plays results for higher Re, using a wider aperture:
2.35 mm. The simple Bernoulli solution leads
again to a fair estimate: within 20%. Because the
viscous losses are small in such a case, the addition
of a Poiseuille term leads only to a slight im-

20 n T T T
+
+
+ +
+ o+ o4 o4 .
o+ o+ 4
10+ 7
x X x X x X X X x X x
X X
X
X X
X
ok i
= . % % ¥ * ok k% % k%
T * X
o *
B * x
o 10 * B
=
ks
& * *  Boundary-layer
+ + Bernoulli
20 b X x Bernoulli+Poiseuille B
e} O Orifice equation
o
O
°© o o 5 o
-30 © oo o ]
° o
© 0o o
(e}
-40 I | 1 1
500 1000 1500 2000 2500 3000

Re

Fig. 3. Relative error for the estimation of the minimum constriction area as a function of the Reynolds number. Results for a uniform
geometry at low-average Reynolds numbers. Minimum constriction height is 1 mm.



X. Pelorson | Speech Communication 35 (2001) 179-190 185
30 T T T T
201t T :
X
X % o+
X X x + + 4+
10k X« M ;t + -
X —+ +
* Xt g
* ) oy
op¥ * ¥k % * X -
* ok oy,
g T
< *
5-10r * ]
)
[
=
5 20 [ ) * *  Boundary-layer b
o + +  Bernoulli
e} X X Bernoulli+Poiseuille
30 b [OlNG) o [e) O  Orifice equation b
o o o
© 0
40 + 4
0 o
% o
@)
-50 | © T
O
_60 1 1 1 1 1
1000 2000 3000 4000 5000 6000 7000
Re

Fig. 4. Relative error for the estimation of the minimum constriction area as a function of the Reynolds number. Results for a uniform
geometry at average-high Reynolds numbers. Minimum constriction height is 2.35 mm.

provement. We note that above Re = 4500 the
Boundary-layer predictions tend to diverge. This
effect is likely to be related to the occurrence of
turbulence within the constriction.

3.1.3. Circular geometry

An example of a typical result concerning this
geometry is presented in Fig. 5.

As in the preceding section, the best results
are obtained by the Boundary-layer solution
while the simple Bernoulli formula remains a
reasonable estimate (still within 20%). As in the
case of the straight geometry, departures at high
Reynolds numbers (above 4000) are also to be
associated with a laminar to turbulent flow
transition. Because the flow separates near the
entrance of the constriction, the effective length
of the model is much smaller than the one ob-
served for the uniform one. The viscous losses,
therefore, remain small and the Poiseuille cor-
rection is almost negligible. The Orifice equation

here provides an overestimate varying from 60%
up to 100%.

3.1.4. Diverging geometry

We now present results concerning a diverging
constriction, which is another physiologically
plausible configuration. An example of the results
is presented in Fig. 6.

Here again, the same conclusions can be drawn:
the best estimate comes from the Boundary-layer
solution except for very high (and very low) Rey-
nolds numbers. The Bernoulli solution provides an
estimate within 10%, and the Orifice equation al-
ways strongly overestimates the actual areas.

3.2. Discussion

The most striking result presented here is
probably the inadequacy of the albeit widely used
Orifice equation to explain the measured data.
More precisely, the use of a flow coefficient
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Fig. 5. Relative error for the estimation of the minimum constriction area as a function of the Reynolds number. Results for a circular

geometry. Minimum constriction height is 2 mm.

(k = 0.65) although recommended by many au-
thors leads to a considerable overestimation of the
constriction areas. A possible explanation for these
discrepancies could lie in the experimental set-up
used to derive this flow coefficient, which has been
more or less replicated by different researchers. This
set-up involves the use of an obsturator or an Orifice
plate inserted inside the nasopharyngeal cavity of a
human subject (Zajac and Yates, 1991) or inside a
replica of the upper vocal tract (Warren and Du-
Bois, 1964; Zajac and Yates, 1991). The major dif-
ference between these experiments and those
presented here, concerns the shape of the constric-
tion. While abrupt sharp edged constrictions were
used by Warren and Dubois and followers, only well
rounded constrictions, and thus more plausible
anatomical geometries, are considered here.

From a fluid mechanical point of view, abrupt
and sharp edged constrictions lead to important
irreversible pressure losses (vena-contracta effect)
and can also be responsible for triggering turbu-
lence within the constriction. The combination of

these two effects are likely to explain the need for a
corrective flow coefficient. In Table 1, an attempt
to analyse Zajac and Yates (1991) results is pre-
sented. In this latter experiment, three plastic tubes
of length L =45 mm and diameters D = 3.2, 4.8
and 6.4 mm were used. Reynolds numbers in-
volved ranged, thus, from Re =2200 up to
Re = 10800. Using formulas and data presented
by Blevins (1992), different estimates for a hypo-
thetical flow coefficient were calculated for differ-
ent flow assumptions. For comparison, similar
calculations considering a rounded entrance are
also displayed in Table 1.

From Table 1, it can be seen that the flow co-
efficient reported by Zajac and Yates (1991)
(0.65 < k< 0.73) can only be expected by assuming
a turbulent flow through a sharp edged constric-
tion. It must be noted that, in the case of a roun-
ded entrance, predicted k values may become
significantly lower than unity. This is due to the
rather large and unrealistic length of the constric-
tion (L =45 mm).
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Fig. 6. Relative error for the estimation of the minimum constriction area as a function of the Reynolds number. Results for a di-

verging geometry. Minimum constriction height is 1 mm.

During speech, the most plausible configuration
is certainly the one involving a constriction having
a rounded entrance. In such a case, the use of a
flow coefficient appears extremely doubtful and
leads in practice to a significant overestimation of
the constriction areas.

In cases where turbulence is clearly involved,
such as for fricatives or whispered voice, one could
however expect the need for a corrective factor to
account for viscous losses. However, this raises
some fundamental questions concerning the exact
location of the turbulent flow (within the con-
striction or past it) and whether the turbulent flow
is fully developed or not, questions which are far
beyond the purpose of this study.

Asexpected, the best estimation for the minimum
constriction area is obtained using the Boundary-
layer solution, except for extreme Reynolds num-
bers. This experimentally confirms that the area
which is measured by the pressure-flow method is
close to the area at which the flow separates from the
constriction. Although using an ad-hoc assumption

about this latter quantity, a simple Bernoulli solu-
tion is found to produce fair estimates.

3.3. Unsteady-flow measurements

An extension of the above results to the case of
unsteady flow conditions is now considered. Un-
steady pulsatile flow conditions through the rigid
constriction are obtained using a collapsible tube
instead of the valve. The collapsible tube consists of
a straight portion of a latex tube placed inside a
compression chamber. When the pressure inside
the chamber is high enough, the latex tube is sub-
ject to self-sustained oscillations providing then a
pulsatile flow. More details about this experiment
can be found in (Conrad, 1969; Bertram, 1986).
The major advantage of this set-up is to allow the
control of unsteady flow conditions which fur-
thermore present some similarities with the glottal
flow. An example of such unsteady flow charac-
teristics is presented in Fig. 7, in the case of a
uniform geometry with a minimum height of 2 mm.
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Table 1
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Expected flow coefficients obtained for two constriction configurations and flow regimes®

<>
L

Jo

sharp edged entrance

Inlet losses

k =0.82

Viscous losses
(laminar flow)

0.76 <k <0.81

Viscous losses
(turbulent flow)

0.69<k<0.75

o
.

rounded entrance

Inlet losses

Viscous losses
(laminar flow)

0.90<k <0.96

Viscous losses
(turbulent flow)

0.86 < k<0.88

#Values are obtained using Zajac and Yates (1991) data. In the case of the rounded entrance, it is assumed that R/D > 0.2.

Volume velocity, m3.s-1

dU/dt

x10°
2 T T T T T T
i i
0 1 1 1 1 1 1
1.75 1.76 1.77 1.78 1.79 1.8 1.81 1.82
1 T T
0
-1 - -
1 1 1 1 Il 1
1.75 1.76 1.77 1.78 1.79 1.8 1.81 1.82

t, s

Fig. 7. Example of unsteady flow conditions imposed on the constriction model. From top to bottom: measured pressure difference
across the constriction model, measured volume velocity, estimated time derivative of the volume flow velocity.

In the example shown in Fig. 7, the collapsible
tube was controlled in order to obtain self-sus-
tained oscillations at a frequency of 142 Hz which is
slightly higher than the average fundamental fre-

quency of an adult male speaker. It must be noted
that the collapsible tube never closes completely,
and thus the volume flow velocity never goes to
zero, which is usually not the case during ‘““‘normal”
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Fig. 8. Relative error corresponding to three different estimates of the minimum constriction area 4,;,. From top to bottom: (a) steady
Bernoulli formula; (b) steady Bernoulli solution accounting for a Poiseuille term; (c) unsteady Bernoulli solution accounting for a
Poiseuille term. Results for a uniform geometry. Minimum constriction height is 2 mm.

phonation. In Fig. 8, three different estimates for
the constriction area are compared, obtained using
the data presented in Fig. 7. For the sake of clarity,
the boundary-layer solution is not presented here.

From the example shown in Fig. 8, it can be
seen that the simple steady Bernoulli solution
provides a limited overestimation of the minimum
constriction area (of less than 20%) except during
the closure of the collapsible tube where the esti-
mate clearly diverges. This corresponds to periods
of high negative values of d®/ds; for minimum
values of d®/dt (e.g. at t = 1.807 s in Figs. 7 and
8), the pressure—flow method fails even to provide
a real solution. Although a slight improvement can
be observed using a Poiseuille corrective term, this
example clearly emphasise the need for an un-
steady corrective term.

4. Conclusions

The major conclusions that can be drawn from
this study are as follows.

(1) From a theoretical point of view, the pres-
sure-flow method allows the estimation of the
constriction dimensions at which the flow sepa-
rates from the walls to form a free jet. As this
position remains close to the minimum constric-
tion, at least for moderate Reynolds numbers and
for steady flows, this method therefore provides a
fair estimate of this latter quantity.

(2) Concerning laminar conditions, the “flow”
coefficient, although widely used, seems doubtful
and could be avoided. From a theoretical analysis
it has been shown that the considerable irreversible
losses observed by Warren and DuBois (1964) and
other researchers can only be explained by a tur-
bulent flow through a sharp edged constriction. As
noted by one of the reviewers of this manuscript,
such a coefficient is, in fact, more a ‘“‘shape” co-
efficient than a “flow” coefficient.

(3) Although the best estimates are provided by
the Boundary-layer solution or using a Poiseuille
correction, both of them require knowledge about
the constriction (such as its length, width or ge-
ometry) which is not, in general, accessible in-vivo.
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The most simple solution based on the Bernoulli
formula using an ad-hoc assumption for the flow
separation point appears thus to be a quite rea-
sonable choice, allowing relative estimation errors
within 20% at the most. This solution also presents
the advantage of being insensitive to the constric-
tion shape, and is thus applicable to most speech
configurations. However, this solution is clearly
limited theoretically and experimentally to invis-
cid, laminar flow conditions. The greatest care
should be taken when using it for fricatives or
whispered voice.

(4) When applied to unsteady flow conditions
such as a pulsatile flow, the Bernoulli solution still
remains reasonably accurate, except when high
temporal velocity gradients are involved. This
would occur during the closure of the vocal folds
or during the onset of the release of a plosive. In
practice, these events can easily be detected and
discarded using a simple numerical differentiation
of the measured flow volume velocity.
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